跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊大慶
研究生(外文):Lawrence Dah-Ching Tzuang
論文名稱:週期性網狀薄膜金屬線與螺旋形金屬薄膜孔洞之異常穿透特性
論文名稱(外文):The Extraordinary Transmission through Periodic Metallic Mesh and Archimedean Spiral Hole Arrays
指導教授:李嗣涔李嗣涔引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:89
中文關鍵詞:異常穿透表面電漿光柵網狀光柵平面金屬結構極化光旋光
外文關鍵詞:extraordinary transmissionsurface plasmongratingmesh gratingplanarmetallicstructruechiralpolarizationpolarization azimuth rotation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文在實驗上觀察二維金屬網狀結構的異常穿透特性,並用一維金屬線的實驗結果來解釋。在波長遠大於周期時,傳統的金屬柵偏振特性可以藉由一些特殊二維金屬網狀結構來改變。這類型結構是在金屬光柵中加入周期性互相聯繫的金屬線,會產生額外的共振膜態,並造成強烈的反射,可以使用在特殊的濾波器應用。另外,在量測光穿透螺旋型孔洞時同時可以觀察到表面電漿效應以及螺旋共振的效應。而螺旋自體共振會有強烈的極化選擇性,而同時還會產生巨大的旋光效果,使單一金屬薄膜就達到調整光極化的目的。
The extraordinary light transmission of two-dimensional rectangular metallic meshes is experimentally demonstrated. The results are explained by orthogonally superimposed one-dimensional gratings. For wavelengths that are much larger than the metal strip period, the transmission spectrum of the traditional wire-grid polarizer could be modified by interconnecting wires between the strips. It performs a special filter with a stop band from excited surface current along the additional wires that causes extra resonating modes of the individual structures. The extraordinary transmission of spiral resonators is also experimentally and numerically demonstrated. It is observed that both suface plasmon modes and shape resonance modes will contribute to the enhanced transmission. The shape resonance mode is polarization dependent and will induce giant specific rotatory power. This structure gives rise to a full modulation of polarization states by a single structured metal thin film.
Contents
Chapter 1 Introduction..........................................................1
Chapter 2 The Fundamentals of Surface Plasmons and The Extraordinary Light Transmission…..……5
2.1 The fundamentals of surface plasmons........................5
2.1.1 Surface plasmons on smooth surfaces.........................5
2.1.2 Surface plasmons on the surface with hole arrays.......11
2.1.3 The concept of spoof surface plasmons.............13
2.2 The Extraordinary Light Transmission……...............16
2.3 Fabrication processes……………..............................17
2.4 Measuring Systems.....................................................20
2.4.1 Introduction of FTIR..............................................20
2.4.2 Transmission measurement.....................................22
2.4.3 Reflection measurement..........................................22
Chapter 3 Transmission Properties of Metallic Mesh Filters with Interconnecting Wires...................26
3.1 The Transmission of one-dimensional strip gratings..27
3.1.1 Experiments..........................................................27
3.1.2 Results and discussions….......................................29
3.2 The transmission of two-dimensional rectangular mesh gratings......................................................................33
3.2.1 Experiments..........................................................33
3.2.2 Results and discussion............................................33
3.3 The transmission of rectangular mesh gratings with interconnecting wires….............................................37
3.3.1 Experiments..........................................................37
3.3.2 Results and discussion............................................39
Chapter 4 The Extraordinary Transmission through a Metal Film Perforated with Periodic Archimedean Spiral Hole Arrays.......................53
4.1 The transmission properties........................................55
4.1.1 Experiments..........................................................55
4.1.2 Results and discussion............................................57
4.2 Polarization rotation effect….....................................68
4.2.1 Experiments..........................................................68
4.2.2 Results and discussion............................................70
Chapter 5 Conclusions..........................................................80
Bibliography.............................................................................83
Bibliography

[1]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
[2]H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[3] U. Schröter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
[4]J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[5] L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, Phys. Rev. Lett. 86, 1110 (2001).
[6] Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).
[7] A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403(R) (2002).
[8] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[9] K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Appl. Phys. Lett. 85, 4316 (2004).
[10] K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
[11] S.-H. Chang, S. K. Gray, and G. C. Schatz, Opt. Express 13, 3150 (2005).
[12] R. Gordon and A. G. Brolo, Opt. Express 13, 1933 (2005).
[13] A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, Phys. Rev. B 71, 075408 (2005).
[14] Z. Ruan and M. Qiu, Phys .Rev. Lett. 96, 233901 (2006).
[15] Ming-Wei Tsai, Tzu-Hung Chuang, Hsu.-Yu Chang, and Si-Chen Lee, Appl. Phys. Lett. 89, 093102 (2006).
[16] J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken, Opt. Express 14, 1253 (2006).
[17] D. Crouse and P. Keshavareddy, Opt. Express 15, 1415 (2007).
[18] J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, Phys. Rev. B 76, 241102(R) (2007).
[19] Y. Pang, C. Genet, and T. W. Ebbesen, Opt. Commun. 280, 10 (2007).
[20] B. Sturman and E. Podivilov, Phys. Rev. B 76, 125104 (2007).
[21] J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, Opt. Express 15, 18119 (2007).
[22] A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, Phys. Rev. B 76, 195414 (2007).
[23] D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, Phys. Rev. B 77, 115411 (2008).
[24] B. Sturman and E. Podivilov, and M. Gorkunov, Phys. Rev. B 77, 075106 (2008).
[25] P. Hewageegana and V. Apalkov, J. Phys.: Condens. Matter 20, 395228 (2008).
[26] H. Liu and P. Lalanne, Nature 452, 728 (2008).
[27] R. Gordon, A. G. Brolo, A. Mckinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).
[28] Chia-Yi Chen, Ming-Wei Tsai, Tzu-Hung Chuang, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 91, 063108 (2007).
[29] M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi , I. El-Kady and R. Biswas, Appl. Phys. Lett. 81, 4685 (2002).
[30] Ming-Wei Tsai, Tzu-Hung Chuang, Chao-Yu Meng, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 89, 173116 (2006).
[31] Xiangang Luo and Teruya Ishihara, Appl. Phys. Lett. 84, 4780 (2004).
[32] J. K. Mapel, M. Singh, M. A. Baldo, and K Celebi, Appl. Phys. Lett. 90, 121102 (2007).
[33] J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).
[34] N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[35]R. H. Ritchie, Phys. Rev. 106, 874−881 (1957).
[36] H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
[37] J. Gómez Rivas, Nature Photonics 2, 137 (2008).
[38] J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolívar, and H. Kurz, Phys. Rev. B 69, 155427 (2004).
[39] T.-I. Jeon and D. Grischkowsky, Appl. Phys. Lett. 88, 061113 (2006).
[40] J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, Phys. Rev. B 68, 201306(R) (2003).
[41] H. Cao and A. Nahata, Opt. Express 12, 1004 (2004)
[42] D. Qu, D. Grischkowsky, and W. Zhang, Opt. Lett. 29, 896 (2004).
[43] F. J. G. de Abajo, R. Gómez-Medina, and J. J. Sáenz, Phys. Rev. E 72, 016608 (2005).
[44] B. Hou, W. Wen, C. T. Chan, and P. Sheng, Appl. Phys. Lett. 89, 131917 (2006).
[45] M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, Opt. Lett. 29, 2500 (2004).
[46] F. Miyamaru, M. Tanaka, and M. Hangyo, Phys. Rev. B 74, 153416 (2006).
[47] J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, Science 305, 847 (2004).
[48] A. P. Hibbins, B. R. Evans, and J. R. Sambles, Science 308, 670 (2005).
[49] C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, Nature Photonics 2, 175 (2008).
[50] R. W. Wood, Phys. Rev. 48, 928 (1935).
[51] J. E. Stewart and W. S. Gallaway, Appl. Opt. 1, 421 (1962).
[52] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).
[53] M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, Phys. Rev. B 67, 085415 (2003).
[54] R. Ulrich, Infrared Phys. 7, 37 (1966).
[55] J. J. Kuta, H. M. Van Driel, D. Landheer, and Y. Feng, J. Opt. Soc. Am. A 12, 1118 (1995).
[56] M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turnenen, B. Schnabel, and F. Wyrowski, Appl. Phys. B 68, 81 (1999).
[57] A. Drauschke, B. Schnabel, and F. Wyrowski, J. Opt. A: Pure Appl. Opt. 3, 67 (2001).
[58] Y. Lu, M. H. Cho, Y-P Lee, and J. Y. Rhee, Appl. Phys. Lett. 93, 061102 (2008).
[59] T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, Appl. Phys. Lett. 83, 234 (2003).
[60] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[61] K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, Opt. Express 15, 9575 (2007).
[62] K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokamim, Opt. Express 16, 7189 (2008).
[63] W. Kuhn, Z. Physik. Chem. B4, 14 (1929).
[64] E. U. Condon, Rev. Mod. Phys. 9, 432 (1937).
[65] H. A. Bethe, Phys. Rev. 66, 163 (1944).
[66] Handbook of Instrumental Techniques for Analytical Chemistry, Ch. 15, edited by C. P. Sherman Hsu.
[67] Yi-Tsung Chang, Tzu-Hung Chuang, Ming-Wei Tsai, Lung-Chien Chen, and Si-Chen Lee, J. Appl. Phys. 101, 054305 (2007).
[68] Yi-Tsung Chang, Tzu-Hung Chuang, Ming-Wei Tsai, Mu-Jen Lai, and Si-Chen Lee, Appl. Phys. Lett. 90, 253106 (2007).
[69] W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 89, 223901 (2002).
[70] W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, Phys. Rev. B 72, 153406 (2005).
[71] L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge, UK, 1982).
[72] E. Hecht, Optics, (Addison-Wesley, Reading MA, 2002).
[73] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983).
[74] M. A. Ordal, R. J. Bell, R. W. Alexander Jr., L. L. Long, and M. R. Querry, Appl. Opt. 24, 4493 (1985).
[75] M. Xu, H. P. Urbach, D. K. G. De Boer, and H. J. Cornelissen, Opt. Express 13, 2303 (2005)
[76] Yu-Wei Jiang, Lawrence Dah-Ching Tzuang, Yi-Han Ye, Yi-Ting Wu, Ming-Wei Tsai, Chia-Yi Chen, and Si-Chen Lee, Opt. Express, to be published (2009).
[77] J. P. Auton, Appl. Opt. 6, 1023 (1967).
[78] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirvin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006).
[79] A. Drezet, C. Genet, J.-Y. Laluet, and T. W. Ebbesen, Opt. Express 16, 12559 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊