跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡亞諭
研究生(外文):Ya-Yu Tsai
論文名稱:HVOF高速火焰熱噴塗WC-Co塗層之磨耗機制與相變化研究
論文名稱(外文):Microstructural Evaluation and Wear Mechanisms of HVOF Thermally Sprayed WC-Co Coatings
指導教授:林明宏林明宏引用關係
指導教授(外文):Lin Ming-Hong
口試委員:林明宏陳順隆李英杰
口試委員(外文):Ming-Hong LinSung-Long ChenYing-Chieh Lee
口試日期:2013-07-18
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:高速火焰熱噴塗磨耗機制碳化鎢相變化
外文關鍵詞:HVOFwear mechanismsWCphase transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1188
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
高速氧氣燃料(HVOF)熱噴塗因具有高速及低溫燃燒火焰的特性,已成為噴塗WC-Co塗層極受歡迎的技術。本研究是將團聚燒結法WC-12Co商用粉末以HVOF噴塗在JIS SS41軟鋼基材上,分別以未退火處理及經1000 退火處理,評估其組織結構及對磨耗試驗的影響。以OM、SEM分析塗層厚度、XRD分析相組成及TEM分析微結構。
結果顯示塗層依噴塗過後有無熱處理而產生不同結果的相變化,有多種因素導致未熱處理試片磨耗性能比經過1000 熱處理試片還要差,像是WC脫碳及分解成W2C和W,經過1000 熱處理試片因熱處理過後,產生了η相(包括Co6W6C及Co2W4C),以及噴塗過程中,W與C熔入Co基地相,造成又硬又脆的粘結相。在未熱處理試片上有出現W2C,會影響磨耗特性。
關鍵字:高速火焰熱噴塗、磨耗機制、碳化鎢、相變化
Capable of the characteristics of high velocity and low temperature combustion gases, the high velocity oxygen fuel (HVOF) thermal spray technique has become very popular for generating the WC-Co coating. In this study, the WC-12Co coating were deposited onto JIS SS41 mild steel substract by the HVOF process using the commercially available feedstock powders produced by fused-crushed method. The coating were different. One was without annealing treatment, and the other was annealing heat treated at 1000 in an argon atmosphere chamber. The coatings were evaluated in the organizational structure and wear mechanisms. The coating thickness of coatings were analyzed by optical microscope and scanning electron microscope. The microstructure and phase composition of coatings were analyzed by x-ray diffraction and transmission electron microscope.
The results indicate that the coatings had various degrees of phase transformation during the spray process depending on annealing treatment or not. There had many reasons cause the of the coating without annealing treatment was worse than the other. One was W2C and W, which was decarbonization and decomposition by WC. And after 1000 annealing treatment, there was produced a phase of η. In spraying process, the hardness and brittle of the binder phase was results from W and C melted into base phase. W2C would affect wear mechanisms on coating that without annealing treatment.

中文摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
第二章 文獻回顧 3
2.1 碳化鎢發展史 3
2.2 碳化鎢的製造 4
2.3 調配碳化鎢 6
2.4 壓形、預燒和修形 7
2.5 燒結 8
2.6 團聚燒結法 12
2.7 磨耗機制 14
2.8 團聚型WC-Co顆粒脫碳機制 16
2.9 孔隙類型 23
第三章 實驗程序 24
3.1 實驗設計 24
3.2 實驗材料與設備 25
3.3 雙束型聚焦離子束製作TEM試片 25
3.4 XRD相分析 27
3.5 OM觀察結構 28
3.6 表面形貌及剖面觀察 28
3.7 微結構組成及繞射分析 29
第四章 結果與討論 31
4.1 FIB切片組織 31
4.2 塗層熱處理前後之相分析 33
4.3 SEM觀察塗層形貌及剖面組織 37
4.4 OM金相觀察剖面組織 41
4.5 TEM分析 43
第五章 結論 56
參考文獻 57

[1] J. E. Nerz, Kushner, Jr. B.A. and A. J. Rotolico, “Microstructural Evaluation of Tungsten Carbide-Cobalt Coatings”, Proceedings of the 4th National Thermal Spraying Conference, Pittsburgh, PA, USA, 1991, pp.115-120
[2] 高鄂 譯, “碳化鎢入門”, 徐氏基金會
[3] 段維新, "40年燒結理論的回顧與發展", 粉末冶金會刊, No.1, 1989, pp.10-15.
[4] 汪健民, 粉末冶金技術手冊, 新竹, 中華民國粉末冶金協會, 1999
[5] 陳文照, 曾春風, 游信和, “材料科學與工程導論”, 2005
[6] 林於隆, “粉末冶金的現況與未來的趨勢", 粉末冶金, Vol.2, 1998, pp. 36-47
[7] K.G. Nickel, R. Danzer, G. Schneider, and G. Petzow, “20 Year of Powder Metallurgy International”, Powder Metallurgy International, 21, 1989, pp.9-46
[8] T. Itsukaichi, and S. Osawa, “Spray Powder and Method for its Production”, United States Patent No.6641917B2, 2003
[9] http://www.supermmc.com/ch/NewsView.asp?ID=106
[10] K. Korpiola, “High Temperature Oxidation of Metal, Alloy and Cermet Powders in HVOF Spraying Process”, Doctoral Thesis, Helsinki University of Technology, 2004
[11] B. Schultrich, L.M. Berger, J. Menker and A. Oswald, “Influence of carbide powder composition on decarburization during air plasma spraying”, Proceedings of the 2nd Plasma-Technik Symposium, Lucerne, Switzerland, 1991, pp.363–371.
[12] J. Nerz, B. Kushner and A. Rotolico, “Microstructural evaluation of tungsten carbide–cobalt coatings”, J. Therm. Spray Technol. 1 (2) , 1992, pp.147–152.
[13] M.F. Morks, Yang Gao, N.F. Fahim, F.U. Yingqing, M.A. Shoeib, “Influence of binder materials on the properties of low power plasma sprayed cermet coatings”, Surf. Coat. Technol. 199, 2005, pp.66–71.
[14] M.S.A. Khan, T.W. Clyne and A.J. Sturgeon, “Microstructure and abrasion resistance of WC–Co coatings produced by high velocity oxy-fuel spraying”, Thermal Spray: A United Forum for Scientific and Technological Advances ASM International, Metals Park, OH, 1997, pp. 681–690.
[15] Y.M. Yang, H. Liao and C. Coddet, “New performance for HVOF thermal spraying systems with the use of natural gas”, Proceedings of 14th International Spray Conference, Osaka, Japan High Temperature Society of Japan, 1995, pp. 307–312.
[16] D. A. Stewart, P. H. Shipway, D. G. McCartney, “Influence of Heat Treatment on the Abrasive Wear Behaviour of HVOF Sprayed WC-Co Coating”, Journal of Surface and coatings Technology, Vol. 105, 1998, pp. 13-24
[17] C. Verdon, A. Karimi and J.L. Martin, “A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures”, Mater. Sci. Eng. A 246 , 1998, pp. 11–24.
[18] R. Schwetzke and H. Kreye, “Microstructure and properties of tungsten carbide coatings sprayed with various HVOF spray systems”, Thermal Spray: Meeting the Challenges of the 21st Century vol. 1 ASM International, Metals Park, OH , 1998, pp. 187–192.
[19] Sh. Khameneh Asl, M. Heydarzadeh Sohi, K. Hokamoto and M. Uemura, “Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings”, Wear 260, 2006, pp. 1203–1208.
[20] H.J. Kim, Y.G. Kweon, R.W. Chang, “Wear and erosion behavior of plasma-sprayed WC-Co coatings”, J. Thermal Spray Technol. 3 (2), 1994, pp. 169–178.
[21] Z. Ding, R. Knight and R.W. Smith, “Abrasion Wear Characteristics of Ni-Base Self-Fluxing Alloy Spray Welding Over-Layers”, Proceeding of the 1st United Thermal Spray Conference, Materials Park, Ohio, USA, 1997, pp. 91–95.
[22] 蕭威典, “陶瓷/金屬材料噴塗技術之發展與應用”, 工業材料雜誌, 2004年4月, 164–169。
[23] H.L. de Villiers Lovelock, P.W. Richter, J.M. Benson, P.M. Young, “Powder/processing/structure relationships in WC-Co thermal spray coatings: A review of the published literature”, J. Therm. Spray Technol. 7, 1998, pp. 357–373.
[24] C.J. Li, A. Ohmori, Y. Harada, “Formation of an amorphous phase in thermally sprayed WC-Co”, J. Therm. Spray Tech. 5 (1), 1996, pp. 69–73.
[25] R. Schwetzke, and H. Kreye, “Microstructure and Properties of Tungsten Carbide Coatings Sprayed with Various High-Velocity Oxygen Fuel Spray Systems”, ASM International, 1999, pp. 433-439
[26] Y.C. Zhu, K. Yukimura, C.X. Ding, P.Y. Zhang, “Tribological properties of nanostructured and conventional WC–Co coatings deposited by plasma spraying”, Thin Solid Films 388, 2001, pp. 277–282.
[27] S. Lay, J.L. Chermant, J. Vicens, “Plasticity of WC materials by T. E. M. investigations”, Mater. Sci. Res. 18, 1984, pp. 87–96.
[28] P. Kulu, S. Zimakov, “Wear resistance of thermal sprayed coatings on the base of recycled hardmetal”, Surf. Coat. Technol. 130, 2000, pp. 46–51.
[29] K. Korpiola, “HIGH TEMPERATURE OXIDATION OF METAL, ALLOY AND CERMET POWDERS IN HVOF SPRAYING PROCESS”, Doctoral Thesis, Helsinki University of Technology, 2004
[30] 林瑞沂, “HVOF高速火焰熱噴塗WC-Co塗層研究”, 國立高雄應用科技大學,碩士論文, 2008
[31] http://cmnst.ncku.edu.tw/files/11-1023-13238.php
[32] http://khvic.nsysu.edu.tw/khvic/JL/D8D-2.htm
[33] http://khvic.nsysu.edu.tw/khvic/JL/52.htm
[34] G. Petzow, V. Carle, and U. Harnisch, “Metallographic Etching”, ASM International, The Materials Information Society, 2nd Edition, 1999
[35] Li Chang-Jiu, Wang Yu-Yue, “Effect of Particle State on the Adhesive Strength of HVOF Sprayed Metallic Coating”, Journal of Thermal Spray Technology, Vol. 11(4), 2002,523-529
[36] D. A. Stewart, P. H. Shipway, D. G. McCartney, “Abrasive Wear Behaviour of Conventional and Nanocomposite HVOF-Sprayed WC-Co Coatings”, Journal of Wear, Vol.225-229, 1999, pp.789-798
[37] S. Usmani, S. Sampath, D. L. Huock, D. Lee, ”Effect of carbide grain size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings”, Tribol. Trans.40, 1997, 470-478
[38] J.M. Guilemany, S. Dosta, J. Nin, and J.R. Miguel, “Study of the Properties of WC-Co Nanostructured Coatings Sprayed by High-Velocity Oxyfuel”, Journal of Thermal Spray Technology Volume 14(3), 2005, 405-413
[39] V. Ramnath, and N. Jarayaman, “Characterization and performance of plasma sprayed WC-Co coatings”, Mater. Sci. Technol., 5, 1989, 382-388
[40] H. Herman, “Plasma Sprayed Coating”, Scientific American, Vol.259, No. 3, 1988, pp. 78-83
[41] 材料實驗教學編輯小組, “材料實驗”, 文京圖書有限公司, 總經銷大揚出版社, 1998


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top