跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇力禾
研究生(外文):Susi Li-Ho Su
論文名稱:從具有混雜數據性質的27年生後裔檢定林分估計香杉的育種價及遺傳增益
論文名稱(外文):Estimating Breeding Values and Genetic Gain of Cunninghamia lanceolata (Lamb.) Hook. var. konishii from a 27-Year Progeny Test with Messy Data.
指導教授:姜保真
指導教授(外文):Israel Bau-Jen Jiang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:90
中文關鍵詞:香杉區集效率邊界效應後裔檢定育種價最佳線性無偏差預測遺傳率
外文關鍵詞:China firefficiency of blockingborder effectprogeny testbreeding valuebest linear unbiased prediction (BLUP)heritability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係針對臺灣的鄉土樹種香杉(Cunninghamia lanceolata (Lamb.) Hook. var. konishii)後裔檢定林分作育種價預測以及遺傳增益估計,共有18個單親家系。原始區集配置係採「逢機完全區集設計」(randomized complete block design, RCBD),共有四個東西向緊鄰並排的縱向完全區集,但經由群內相關係數分析得知,區集配置應採二個南北向之橫向區集規劃較為妥當。更改區集配置後之數據結構呈不完全區集設計,且邊界效應嚴重影響邊緣木的橫向生長性狀,故剔除邊緣木後重作分析。
本研究發現2H、27WD之生長不受環境影響,且家系間沒有顯著差異,其他生長性狀6H、25H、25DBH、25DBA、25VOL、GR2-6以及GR6-25在區集間(P=0.0005~0.0229)與家系間(P=0.0163~0.1088)皆有顯著差異。高生長2H、25H有家系與區集間交感效應,而橫向生長25DBH、25DBA以及25VOL幾乎消除交感效應(0%)。
25H具高度個體遺傳率(0.61),且樹高之遺傳率通常會隨林齡增加而增大,林木的高生長較橫向生長的遺傳率(0.39~0.48)要高。樹高在不同林齡之間存在著高度的遺傳相關性(0.61),同林齡之樹高與橫向生長也存在著高遺傳相關性(0.59~0.76)。本後裔檢定由於所估計之木材密度缺乏家系變異,因而無法估計木材密度與其他生長性狀之「遺傳相關性」。
以一個單位(i=1)的表型偏差作為選拔差下所估計之遺傳增益有2.29公尺25H、2.34公分之25DBH以及0.08立方米之25VOL。以6H進行早期選拔,可以獲得1.10公尺之25年生樹高,相當於每年可以獲得0.18公尺,較直接選拔25H每年所獲得之0.09公尺之遺傳增益要高。
無論家系視作「固定效應」或是「逢機效應」,各性狀之MEAN與BLUP二育種價之相關係數也相當高(0.9231~0.9572)。在BLUP中,家系7、9、10、12與23,這五個家系在二個不同林齡之樹高皆入選前九名;同時入選25H與25DBH二性狀之前九名家系有7、9、10、11、23以及29家系;若同時考慮入選6H、25H與25DBH三性狀之前九名家系有7、9、10和23號家系;同時落在最後七名之家系有8、21、31及33家系。以雙性狀模式(25H和25DBH)估計25DBH之育種價,前九名之家系可以改良幅度為10.29%∼0.97%,對多性狀選拔為良好之策略。本研究結果對於香杉遺傳選拔的可能發展,提供了足以參考的經驗。
Eighteen open-pollinated (OP) families of a local variety of China fir (Cunninghamia lanceolata (Lamb.) Hook. var. konishii) were grown in a field trial to evaluate the magnitude of genetic parameter estimates and ranking of the parental clones, for growth (height, DBH, and diameter at basal area; DBA) and wood density traits up to 27 years. The field-trial layout was randomized complete block design (RCBD) with four adjacent south-north longitudinal blocks. After checking the intra-class correlations it was found that it would be better to divide the 4 east-west blocks into 2 south-north blocks, so that the long axis of the block is parallel to the contour. That made the field design incomplete blocks. It was also found that edge effects seriously influenced the stem diameter growth for the border trees. We therefore also deleted those seriously biased border trees from the data.
Statistical analyses showed second-year height and 27-year wood density were not influenced by environmental impacts, and there were no significant differences among families. Other growth traits (six-year height, 25-year height, 25-year DBH, 25-year DBA, 25-year stem volume, relative growth between second- and six-year heights, and relative growth between six- and 25-year heights) showed significant differences among families and among blocks. Height growth (second-year and 25-year heights) showed significant family by block interactions. Stem diameter growth (25-year DBH, DBA, and Volume) traits had no interactions at all.
Tree height between ages demonstrated substantial genetic correlation (0.61). Tree height and stem diameters of the same age also exhibited substantial genetic correlations (0.59). Twenty-seven-year wood density showed no family variation.
Twenty-five-year height showed high individual-tree heritability. Heritability estimates increased as the trees grew older. Height growth traits in general have higher heritabilities than stem diameter growth.
Using one unit of standard phenotypic deviation as selection differential to estimate genetic gain would result in 2.29m in 25-year height, 2.34cm in 25-year DBH, and 0.08m3 in 25-year stem volume. Using six-year height as an early-selection trait, indirect selection would result in 1.10m gain in 25-year height. This is equivalent to 0.18m per year, which is much higher than a gain of 0.09m direct selection in 25-year height.
No matter whether family effect is taken as “fixed effect” or “random effect”, arithmetical means and BLUP values showed high correlations (0.9231~0.9572), which implies that both are reliable estimates of the breeding values. Using BLUP values to rank families, five families were both selected into the top nine families for tree height at different ages. Using bi-character (25-year height and DBH) to adjust the estimate of breeding values of 25-year DBH is effective. The improvement magnitude of the top nine families is from 10.29% to 0.97%. This method was therefore proven to be a superior strategy of multi-trait selection. Current research results provide a useful reference for genetic selection of China fir in the future.
【目 錄】
目錄 ----------------------------------------------------------------------------------- Ⅰ
圖表目次 ------------------------------------------------------------------------------ Ⅱ
中文摘要 ------------------------------------------------------------------------------ Ⅳ
英文摘要 ------------------------------------------------------------------------------ Ⅵ
壹、前言 ------------------------------------------------------------------------------ 1
貳、材料與方法 ---------------------------------------------------------------------- 12
一、材料來源 ---------------------------------------------------------------------- 12
二、試驗地描述 ------------------------------------------------------------------- 12
三、性狀調查 ---------------------------------------------------------------------- 17
四、統計分析方法 ---------------------------------------------------------------- 19
(一)「不均衡」族群結構的處理 ----------------------------------------- 19
(二)區集配置 ---------------------------------------------------------------- 19
(三)邊界效應 ---------------------------------------------------------------- 21
(四)族群結構的同質性 ---------------------------------------------------- 21
(五)單變數變方分析 ------------------------------------------------------- 21
(六)估計變方成分 ---------------------------------------------------------- 22
(七)估計遺傳率 ------------------------------------------------------------- 24
(八)性狀間相關性 ---------------------------------------------------------- 25
(九)估計遺傳增益 ---------------------------------------------------------- 27
(十)育種價預測 ------------------------------------------------------------- 28
參、結果與討論 --------------------------------------------------------------------- 32
一、各性狀之生長表現 ---------------------------------------------------------- 32
二、「不均衡」族群結構 ---------------------------------------------------------- 36
三、哈特萊最大F值檢定法------------------------------------------------------- 37
四、區集之配置 ------------------------------------------------------------------- 38
五、邊界效應 ---------------------------------------------------------------------- 42
六、二大區集試驗設計之分析結果 ------------------------------------------- 43
七、估計變方成分 ---------------------------------------------------------------- 45
八、估計遺傳率 ------------------------------------------------------------------- 48
九、性狀間相關性 ---------------------------------------------------------------- 49
十、估計遺傳增益 ---------------------------------------------------------------- 54
十一、育種價預測 ---------------------------------------------------------------- 57
肆、綜合結論 ------------------------------------------------------------------------- 64
伍、引用文獻 ------------------------------------------------------------------------- 69
附錄------------------------------------------------------------------------------------- 77
【圖 表 目 次】
圖1. 栽植鬱閉(2m  2m)造成林木間彼此之生長競爭係後裔檢定之用意------------------ 14
圖2. 東勢香杉後裔試驗地之俯視圖,此試驗地之地勢相當陡峭----------------------------- 14
圖3. 東勢八仙山事業區香杉後裔檢定林原始之家系區集配置圖---------------------------- 15
圖4. 改變後之南北向二大區集配置圖------------------------------------------------------------- 16
圖5. 生長椎抽取之木條樣本,以供木材密度之量測-------------------------------------------- 18
圖6. 椎取木條樣本過程中,盡量避開腐朽木材之部位----------------------------------------- 18
表1. 杉木之總生長量---------------------------------------------------------------------------------- 5
表2. 東西向四大區集最後各家系存活的株數---------------------------------------------------- 15
表3. 南北向二大區集經刪除邊緣木後之各家系的株數---------------------------------------- 16
表4. 「韓德森第三型估計法」之變方成分表------------------------------------------------------- 23
表4.2「韓德森第三型估計法」(第四型平方和)之期望均方係數表----------------------- 23
表5. 「韓德森混和模式法」之變方成分表---------------------------------------------------------- 23
表6. 多性狀之共變方分析表------------------------------------------------------------------------- 26
表7. 各性狀之生長表現------------------------------------------------------------------------------- 32
表8. 性狀25H和25DBH平均值之前12名與後12名之個體分布---------------------------- 34
表9. 去邊界效應後各性狀之生長表現------------------------------------------------------------- 35
表10. 東西向四個區集之各區集算術平均數(MEAN)與最小平方平均數(LSM)---------- 36
表11. 性狀25DBH家系之算術平均數與最小平方平均數的相關係數---------------------- 36
表12. 哈特萊最大F值檢定法(未去邊界效應)--------------------------------------------------- 37
表13. 哈特萊最大F值檢定法(去邊界效應後)--------------------------------------------------- 38
表14. 原始四個區集(去邊界效應後)的性狀表現----------------------------------------------- 39
表15. 二大區集(去邊界效應後)的性狀表現----------------------------------------------------- 39
表16. 韓德森第三型估計法之各性狀變方成分表(25列)-------------------------------------- 40
表17. 四個縱向區集做分群之「群內相關係數」-------------------------------------------------- 40
表18. 五個橫向區集做分群之「群內相關係數」-------------------------------------------------- 41
表19. 二種試驗設計(二個橫向區集的RCBD及CRD)之機差均方及相對效率----------- 41
表20. 限制最大概度估計法(REML)之各性狀變方成分表(四個區集)--------------------- 45
表21. 限制最大概度估計法(REML)之各性狀變方成分表(二大區集)--------------------- 46
表22. 韓德森第三型估計法(第四型平方和)之各性狀變方成分表(二大區集)----------- 47
表23. 混合模式之限制最大概度估計(REML)求各性狀變方成分表(二大區集)---------- 48
表24. 三種變方成分估計法所估計各性狀之個體遺傳率與排序----------------------------- 49
表25 . 針對所有個體計算之簡單外表型相關性------------------------------------------------- 50
表26. 「外表型」和「遺傳型」相關係數-------------------------------------------------------------- 52
表27. 「遺傳和環境交感效應」和「機差」之相關係數-------------------------------------------- 53
表28. 在選拔強度(i=1)時,預測的直接選拔效應和間接選拔相關效應--------------------- 54
表29. 在選拔強度(i=1)時,預測之單位時間內直接選拔效應和間接選拔效應----------- 56
表30. 三種估計區集平均值法----------------------------------------------------------------------- 57
表31. 以最佳線性無偏差預測為育種價,入選前九名之家系---------------------------------- 58
表32. 性狀6H、25H和25DBH間BLUP之相關--------------------------------------------------- 59
表33. 以雙性狀模式預測二林齡(6H與25H)之BLUP------------------------------------------ 60
表34. 以單性狀與雙性狀來預測6H之BLUP----------------------------------------------------- 61
表35. 以雙性狀模式預測二林齡(25H與25DBH)之BLUP------------------------------------ 62
表36. 以單性狀與雙性狀來預測25DBH之BLUP----------------------------------------------- 63
附錄1. 東西向四個區集之各家系算術平均數(MEAN)與最小平方平均數(LSM)--------- 77
附錄2. 三種不同數據結構之各性狀變方成分表------------------------------------------------- 78
附錄3. 各性狀在每列及第四區集最後一行之平均值與變方表現---------------------------- 80
附錄4. 二種育種價之估計與預測(二大區集)---------------------------------------------------- 81
附錄5. 各性狀之算術平均值(MEAN)、最小平方平均值(LSM)、最小平方估計值(LSE)以及最佳線性無偏差預測量(BLUP)之相關係數--------------------------------------- 82
附錄6. 「最小平方估計值」(LSE)中固定效應之係數矩陣-------------------------------------- 83
中國林業部造林局主編,1985,杉木林豐產技術,中國林業出版社,北京,p.42。
中華林學會編,1967,臺灣主要木材圖誌,中華林學會叢書之四,中華林學出版社,台北,p.6~7。
王明庥主編,2001,林木遺傳育種學,中國林業出版社,北京,p.1.
王瀛生和林裕仁,1999,臺灣產重要商用木材,林業叢刊第111號,行政院農業委員會林業試驗所發行,p.10~11。
台灣省林務局編,2002,台灣省林業統計,p. 38, 118。
沈明來,2004,試驗設計學,第三版,九周圖書,p.106。
周志春、金國慶、周世水,1994,馬尾松自由授粉家系生長和材質的遺傳分析及聯合選擇,林業科學研究,7(3): 263-268。
施季森、葉志洪、陳岳武,1987,杉木材性遺傳和變異的研究─II. 杉木種子園自由授粉子代間木材密度的遺傳變異和性狀間的相關性,南京林業大學學報,(4): 15-25。
姜家華、王亞男、李鎮宇、姜保真、李明仁、胡大維、潘富俊、林世宗、吳文鑾,1999,林木遺傳與育種學,國立編譯館,台北,p.73。
彭游、吳水丕,1997,生物統計學,合記圖書出版社,台北,p.107。
黃妙霖,1997,杉木抗葉枯病之早期遺傳篩選試驗,中興大學森林學研究所碩士論文,p.13。
馮豐隆、鄭美如主編,1992,臺灣主要樹種生長收穫模式庫彙集,國立中興大學森林學系,台中。
楊政川,1981,香杉單親後裔檢驗之早期結果,中華林學季刊,14(4):41-54。
楊政川、李承輝、邱志明,1998,使用外層數年輪以推估香杉比重之精度,臺灣林業科學,13(4):251-257。
董新堂編著,1964,林木改良學,臺灣中華書局,台北,p.6。
廖坤福編著,1997,木材物理學,p. 4, 5,國立中興大學教務處出版組,台中。
鄭仁華、陳國金、俞白楠、楊宗武、梁慶松、傅忠華、王炳章、潘瓊蓉、傅玉獅, 2001,馬尾松家系木材基本密度遺傳變異的研究,西北林學院學報,16(4): 6-9。
劉業經、林文鎮、林維治,1979,臺灣經濟樹木育林學(一),國立中興大學森林系,台北,p.70。
羅傑 • 波凱斯著,陳鶴琴譯,2003,統計學辭典,貓頭鷹出版社,台北,p.177。
Allard, R.W. 1960. Principles of Plant Breeding. John Wiley and Sons, Inc., New York, USA. p.1.
Barnes, R. D., Mullin, L. J., and Battle, G. 1992a. Genetic control of fifth year traits in Pinus patula. Silvae Genetica. 41(4-5): 242-248.
Barnes, R. D., Mullin, L. J., and Battle, G. 1992b. Genetic control of eight year traits in Pinus patula. Silvae Genetica. 41(6): 318-326.
Becker, W. A. 1992. Manual of Quantitative Genetics. 5th Edition. Academic Enterprises. Pullman. Wash., USA. p.117.
Berenson, M. L., Levine, D. M., and Goldstein, M. 1983. Intermediate statistical methods and applications. Prentice-Hall Inc. USA. p.66-70.
Birot, R. Y. and Nepveu, G. 1979. Variabilite clonale et liasons ortets-ramets dans une population d’epica. Silvae Genetica. 28: 37-47.
Blada, I. 1994. Performance of open-pollinated progenies of blue pine in Romania. Silvae Genetica. 43(4): 231-238.
Blada, I. 1999. Diallel crossing in Pinus cembra. Silvae Genetica. 43(3-4): 179-187.
Bohren, B. B., Hill, W. G., and Robertson, A. 1966. Some observations on asymmetrical correlated response. Genet. Res. 7: 44-57.
Brazier, J. D. 1970. Timber improvement II: The effect of vigor on young-growth of Sitka spruce. Forestry. 43: 135~150.
Burdon, R. D. 1989. Early selection in tree breeding : principles for applying index selection and inferring input parameters. Can. J. For. Res. 19: 499-504.
Bryam, T. D. and Lowe, W. J. 1988. Specific gravity variation in a loblolly pine seed source study in western gulf region. Forest Science. 34(3): 798-803.
Cony, M.A. 1996. Genetic variability in Prosopis flexuosa D.C., a native tree of the Monte phytogeographic province, Argentina. Forest Ecology and Management. 87: 41~49.
Cook, L. M. and R. S. Callow. 1999. Genetic and Evolutionary Diversity: The Sport of Nature. 2nd Ed. Stanley Thornes (Publishers) Ltd., Glos, UK. p. 127.
Correll, R. L. 1978. The optimal plot size for Pinus radiata establishment trails. Mathematical Project. South Australian Institution of Technology. p.40.
Cotterill, P. P., Correll, R. L., and Boardman, R. 1983. Methods of estimating the average performance of families across incomplete open-pollinated progeny tests. Silvae Genetica. 32: 28-32.
Cotterill, P. P. and James, J. W. 1984. Number of offspring and plot sizes required for progeny testing. Silvae Genetica. 33(6): 203-209.
Danjon, F. 1995. Observed selection effects on height growth, diameter and stem form in maritime pine. Silvae Genetica. 44(1): 10-19.
Eisemann, R. L., Harding, K. J., and Eggles, D. B. 1990. Genetic parameters and predicted selection responses for growth and wood properties in a population of Araucaria cunninghamii. Silvae Genetica. 39: 206~216.
Eisenhart, C. 1947. The assumptions underlying the analysis of variance. Biometrics. 3: 1-21.
Ernst, S. G., Howe, G., Hanover, J. W., and Keathley, D. E. 1983. Genetic variation and gains of specific gravity and wood biomass in a jack pine half-sib progeny test in Michigan. Proc. 3rd. North-Central Tree Imp. Conf. p.111-122.
Falconer, D. S. 1981. Introduction to Quantitative Genetics. 2nd Edition. Longman, NY.
Falconer, D. S. and Mackay, F. C. 1996. Introduction to Quantitative Genetics. 4th. Edition. Prentice Hall. p.316.
Foster, G. S. 1986. Trends in genetic parameters with stand development and their influenceon early selection for volume growth in lobolly pine. Forest Science. 32: 944-959.
Freund, R. J. and Littell, R. C. 1981. SAS for Linear Models. SAS Institute, Inc., Cary, NC. p.102. 231.
Gill, J. G. S. 1987. Juvenile-mature correlations and trends in genetic variances in Sitca spruce in Britain. Silvae Genetica. 36(5-6): 189-194.
Hammond, K. and Nicholas, F. W. 1972. The sampling variance of the correlation coefficients estimated from two-fold nested and offspring-parents regression analysis. Theor. Appl. Genet. 42: 97-100.
Hatcher, A. V., Bridgwater, F. E., and Weir, R. J. 1981. Performance level: standardized score for progeny test performance. Silvae Genetica. 30: 184-187.
Henderson, C. R. 1953. Estimation of variance and covariance components. Biometrics. 9: 226-252.
Henderson, C. R. 1984. Applications of Linear Models in Animal Breeding. University of Guelph, Guelph, Ontario, CAN. p.462.
King, J. N., Yeh, F. C., Heaman, J. C., and Dancik, B. P. 1988. Selection of wood density and diameter in controlled crosses of coastal Douglas-fir. Silvae Genetica. 37: 152-157.
Klein, I. J. 1995. Multiple-trait combined selection in jack pine family-test plantations using best linear prediction. Silvae Genetica. 44: 362-374.
Kremer, A. 1992. Predictions of age-age correlations of total height based serial correlations between height increments in Maritime pine (Pinus pinaster). Theor. Appl. Genet. 85: 152-158.
Kusnandar, D., Galway, N. W., Hertzler, G. L., and Butcher, T. B. 1998. Age trends in variances and heritabilities for diameter and height in Maritime pine (Pinus pinaster) in western Australia. Silvae Genetica. 47(2-3): 136-141.
Lambeth, C. C. 1980. Juvenile-mature correlations in Pinaceae and implications for early selection. Forest Science. 26: 571-580.
Lester, D. T. and Barr, G. R. 1966. Shoot elongation in provenance and progeny tests of red pine. Silvae Genetica. 15(1): 1-6.
Lee, C. H. 1972. Statistical efficiency in wood quality study based on a black pine plantation. Silvae Genetica. 21: 249-250.
Lee, S. J. 1999. Improvement the timber quality of Sitka spruce through selection and breeding. Silvae Genetica. 72: 123~133.
Magnussen, S. and Keith, C. T. 1990. Genetic improvement of volume and wood properties of jack pine: selection strategies. For. Chron. 66: 281-286.
Mayaka, T. B., Fonweban, J. N., Tchanou, Z., and Lontchui, P. 1995. An assessment of edge effect on growth and timber external quality of Ayous (Triplochiton scleroxylon K Schum) under Cameroon rain forest conditions. Ann. Sci. For. 52:81-88
McKeand, S. E., Eriksson, G., and Roberds, J. H. 1997. Genotype by environment interaction for index traits that combine growth and wood density in loblloly pine. Theor. Appl. Genet. 94: 1015-1022.
Micko, M. M., Wang, E. I. C., Taylor, F. W., and Yanchuk, A. D. 1982. Determination of wood specific gravity in standing white spruce using a Pilodyn tester. For. Chron. 58: 178-180.
Milliken, G. A. and Johnson, D. E. 1984. Analysis of Messy Data I. Designed experiments. Lifetime Learning Pub., Belmont, CA. p.473.
Montgomery D. C. 1984. Design and Analysis of Experiments. 2nd Edition. JOHN WILEY & SONS. New York. USA. p.134.
Mrode, R. A. 1996. Linear Models for the Prediction of Animal Breeding Values. CAB INTERNATIONAL. Wilts, UK. p.42.
Namkoong, G. and Conkle, M. T. 1976. Time trends in genetic control of height growth in ponderosa pine. Forest Science. 22: 2-12.
Namkoong, G., Usanis, R. A., and Silen, R. R. 1972. Age-related variation in genetic control of height growth in Douglas-fir. Theor. Appl. Genet. 42: 151-159.
Nebgen, R. J. and Lowe, W. J. (1982) Inheritance of growth, branch angle, and specific gravity in three American sycamore population. Silvae Genetica. 31: 86~89.
Nienstaedt, H. and Riemenschneider, D. E. 1985. Changes in heritability estimates with age and site in white spruce, Picea glauca (Moench) Voss. Silvae Genetica. 34: 34-41.
Oosterhoorn, M. and Kappelle, M. 2000. Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest. Forest Ecology and Management 126: 291-307.
Panter, D. M. and Allen, F. L. 1995. Using best unbiased predictions to enhance breeding for yields in soybean: I. choosing parents. Crop Science. 35: 397-405.
Patterson, H. D. and Thompson, R. 1971. Recovery of interblock information when block sizes are not equal. Biometrics. 58: 545-554.
Reeve, E. C. R. 1955. The variance of the genetic correlation coefficient. Biometrics. 11: 357-374.
Riemenschneider, D. E. 1988. Heritability, age-age correlations, and inferences regarding juvenile selection in jack pine. Forest Science. 34: 1076-1082.
Robertson, A. 1959. The sampling variance of the genetic correlation coefficient. Biometrics. 15: 469-485.
Saenz, R. C., Nienstaedt, H., and Vargas, H. J. 1994. Performance of Pinus patula genotypes selected in South Africa and growing in their native Mexican environment. Silvae Genetica. 43: 73-81.
Sehgal, R. N., Parmar, S. K., and Dhall, S. P. 1995. Half-sib progeny evaluation in Chir pine. Silvae Genetica. 44: 61-62.
Shelbourne, C. J. A., Zobel, B. J., and Stonecypher, R. W. 1969. The inheritance of compression wood and its genetic and phenotypic correlations with six other traits in five-year-old loblloly pine. Silvae Genetica. 18: 43-47.
Sprague, J. R., Talbert, J. T., Jett, J. B., and Bryant, R. L. 1983. Utility of the Pilodyn in selection for mature wood specific gravity in loblolly pine. Forest Science. 29: 696-701.
Sokal, R. R. and Rohlf, J. F. 1995. Biometry. 3rd Edition. W. H. Freeman and Company. New York. p. 213.
Steel R. G. D. and Torrie J. H. 1984. Principles and Procedures of Statistics A Biometrical Approach. 2nd Edition. YI HSIEN PUBLISHING CO. Taipei. R.O.C. p.214.
Tibbits, W. and Hodge, G. 1998. Genetic parameters and breeding value predictions for Eucalyptus nitens wood fiber production traits. Forest Science. 44(4): 587-598.
Thompson, R. 1979. Sire evaluation. Biometrics. 35: 339-353.
Van Vleck, L. D. and Henderson, C. R. 1961. Empirical sampling estimates of genetic correlations. Biometrics. 17: 359-371.
White, T. L. and Hodge, G. R. 1989. Predicting Breeding Values with Applications in Forest Tree Improvement. Kluwer Academic Publishers. Boston, London.
Wood, P. E. 1986. Variation and wood properties of Sitca spruce. Master Thesis. Oxford Forestry Institute. p.97.
Wright, J. W. 1976. Introduction to Forest Genetics. 1st Edition. Academic press. New York. U.S.A. p. 463.
Yanchuk, A. D. 1986. Variation of genetic parameters of Pinus contorta var. latifolia (Engelm.) in central British Columbia: Some evolutionary implications for multi-trait selection. Unpublished Ph. D. thesis. University of Alberta. Edmonton.
Yanchuk, A. D. and Kiss, G. K. 1993. Genetic variation in growth and wood specific gravity and its utility in the improvement of interior spruce in British Columbia. Silvae Genetica. 42: 141-148.
Yang, J. C., Lee, C.H., and Chiu, C. M. 2000. Genetic variation of wood density in Luanta fir tested in central Taiwan. Wood and Fiber Science. 33(3): 486~491.
Zobel, B. J. 1961. Inheritance of wood properties in conifers. Silvae Genetica. 10(3): 65-70.
Zobel, B. J. and Talbert, J. 1984. Applied Forest Tree Improvement. John Wiley and Sons, New York.
Zobel, B. J. and Van Buijtenen, J. P. 1989. Wood variation: its causes and control. Springer-Verlag, Berlin.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top