跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:倪金安
研究生(外文):Budijanto Widjaja
論文名稱:塑性和黏滯液性土壤之黏滯性檢測及其應於土石流行為解析
論文名稱(外文):Viscosity Determination of Soil in Plastic and Viscous Liquid States for Elucidating Mudflow Behavior
指導教授:李咸亨李咸亨引用關係
指導教授(外文):Shannon Hsien-Heng Lee
口試委員:李咸亨
口試委員(外文):Shannon Hsien-Heng Lee
口試日期:2012-11-21
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:161
中文關鍵詞:土石流黏性值含水量液性限度液性指數流變學
外文關鍵詞:mudflowviscositywater contentliquid limitliquidity indexrheology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
含水量是促使土壤由塑性體轉變成黏滯性液體的主要原因,含水量增加後,土壤行為就逐漸像黏滯性液體一樣。雖然黏性值(viscosity)是如此重要的關鍵因子,卻只有少數資料曾經成功地量測到土壤由塑性體轉變成黏滯性液體時的所有過程中黏性值,本研究的目標就是希望設計一個能夠克服此難題的新儀器。
根據Terzaghi (1943)的活板門原理(trap door principle)和Bingham理論,本研究設計了一個新儀器-流速盒,也推導出該流速盒之控制方程式,以計算黏性值與液性指標之關係。研究中,土壤由塑性體轉變成黏滯性液體時的每一過程,新儀器(流速盒)都成功地量測到黏性值。當液性指標增加時,黏性初值就減少。流速盒量測之黏性初值和其他研究資料相符,也能驗證貓空土石流行為。因此,新儀器達成目標了。
相位理論(The phase concept)蘊含著含水量是促使土壤由塑性體轉變成黏滯性液體的因子,可用以解釋危險的土石流行為。本研究以三種不同含水量模擬2008年薔蜜颱風襲擊北台灣時,大雨造成的貓空土石流。流速(flow velocity) 和固體之體積濃度(solid concentration by volume)是主要的流變學參數,被用於土石流分類規範。新儀器(流速盒)直接量測降伏應力和黏性初值。研究結果顯示含水量達到或超越液性限度時,貓空土石流堆積量預測值和現場一致。另外,印尼的Karanganyar 和 Ciwidey 地點的兩個案例也有成功的結果。
流速盒的優點是能夠直接量測土壤由塑性體轉變成黏滯性液體時每一階段之黏性值,而黏性值主導液體土壤之流速,也用於解釋土石流行動。因此,本研究以流速盒獲得的流變學參數進行數值模擬分析,並成功地解釋土石流由流動區至堆積區的現象。
The transformation of soil from a plastic state into a viscous liquid state is primarily caused by changing the water content of the soil mass. As the water content increases, the soil mass gradually starts to behave like a viscous liquid. In spite of viscosity being a key parameter to the behavior of mudflows, there have no datasets of soil viscosity changes successfully measured continuously as they move from plastic to viscous liquid states. The aim of the current research is to design a new device to overcome this difficulty. Based on the trap door principle formulated by Terzaghi (1943) and the Bingham model, a new device called the Flow Box was designed. The governing equation of the Flow Box was derived in this research in order to obtain the relationship between initial viscosity and liquidity index. In this study, the viscosities in both plastic and viscous liquid states were clearly defined by the Flow Box Test. The expected decrease in initial viscosity was followed by an increase in liquidity index, which corroborated with the test results. The initial viscosity readings with the results of other similar research and the case study of the Maokong mudflow was also validated. Hence, the purpose of this research to create a new device to successfully determine viscosity levels as soil changes from plastic to liquid state is completed.
The phase concept implies that the state of soil changes from plastic to viscous liquid as a function of water content. This principle could be used to interpret the behavior of mudflow, which is the most dangerous mass movement today. When Typhoon Jangmi hit northern Taiwan in 2008, a mudflow occurred in the Maokong area as the result of a high-intensity rainfall. This case was studied using three case simulations each with different water contents. Based on the mudflow classifications, the primary criteria used were flow velocity and solid concentration by volume. The results show that the mass movement confirms the aforementioned criteria for mudflow especially when the water content reaches or exceeds the liquid limit. The validation using Karanganyar and Ciwidey mudflows has the similar trend to Maokong mudflow. The flow box test can determine the viscosity for both plastic and viscous liquid states, which is advantageous. Viscosity is important in explaining the general characteristics of mudflow movement because it controls flow velocity. Therefore, the present study successfully elucidates the changes in mudflow from its transportation to its deposition via numerical simulation using laboratory rheology parameters.
Abstract ii
Acknowledgements vi
Dedication viii
Table of Contents ix
List of Tables xiii
List of Figures xiv
List of Symbols and Nomenclature xx
Chapter I
INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Objectives 3
1.3.1 Research hyphotesis 4
1.3.2 Research limitation 5
1.4 Overview of the Proposed Method 5
1.5 Organization of the Dissertation and Significant Contribution 6
Chapter II
LITERATURE REVIEW 8
2.1 Type of Mass Wasting 8
2.2 Definition and Classification of Mudflow 9
2.3 Characteristic of Mudflow 10
2.4 Initiation of Mudflow 11
2.5 Transportation of Mudflow 16
2.6 Deposition of Mudflow 17
2.7 Liquid Limit 17
2.8 Rheology 22
2.9 Yield Stress and Viscosity 23
2.10 Newtonian and Non-Newtonian Fluids 24
2.11 Moving Ball Test 28
2.12 Mudflow Characteristics 31
2.13 Appropriate Rheology Model for Mudflow 31
2.14 Numerical Analysis 32
2.15 Hydraulic Model FLO2D 33
2.16 Prevention of Mudflow 35
2.17 Summary 35
Chapter III
MATERIALS AND METHODS 37
3.1 Governing Equation for the Flow Box 37
3.1.1 Assumptions 37
3.1.2 Boundary Conditions 38
3.1.3 Sample limitations 38
3.1.4 Force Equilibrium 39
3.2 Hardware Design of the Flow Box 42
3.3 Sample Preparation 42
3.4 Test Procedure 43
3.5 Viscosity Data Calculation 43
3.6 Developing the Initial Viscosity and Liquidity Index Graph 44
3.7 Results 44
3.7.1 Parametric study of Flow Box Test 44
3.7.2 Evolution of experimental displacement 46
3.7.3 Kaolin sample 46
3.7.4 Reproducibility using Maokong soil 48
3.7.5 Parametric study of FLO2D 48
3.8 Discussion 51
3.8.1 Parametric study of Flow Box Test 51
3.8.2 General characteristics of FLO2D parameters 52
3.8.3 Influence of LI and viscosity on flow velocity 52
3.8.4 Influence of LI and clay fraction to viscosity 53
3.8.5 Validation with case study 54
3.8.6 General characteristics of mudflow behavior 55
3.9 Summary 56
Chapter IV
NUMERICAL SIMULATION 58
4.1 Case Study: Mudflow in Maokong, Taiwan 58
4.1.1 Location of the case study 58
4.1.2 Soil stratification and parameters of the mudflow 59
4.1.3 Soil parameters 60
4.1.4 Modeling conditions 60
4.1.5 Results and Discussion 61
4.2 Validation 70
4.2.1 Case study: Karanganyar mudflow, Indonesia 70
4.2.2 Case study: Ciwidey mudflow, Indonesia 74
4.3 Summary 78
Chapter V
CONCLUSIONS AND RECOMMENDATIONS 79
5.1 Conclusions 79
5.2 Recommendations 82
REFERENCES 83
APPENDIX 1: DERIVATION OF GOVERNING EQUATION OF FLOW BOX TEST 101
APPENDIX 2: TESTING AND CALCULATION PROCEDURE OF FLOW BOX TEST 110
VITA 159
LIST OF PAPERS 160
1.Abbot, P.L. (2004): Natural disasters, 4th ed., Mc-Graw Hill, New York, USA.
2.Ancey, C. (2010): Debris flow. Environmental geomechanics, John Wiley &; Sons, New Jersey, USA.
3.Arogyaswamy, R.N.P. (1992): Landslides, subsidences, creeps and displacements of non-tectonic origin, Geotech. application in civil eng., A.A. Balkema, Rotterdam, The Netherlands, 108-119.
4.Atkinson, J. (1993): Stability of slope, An introduction to the mechanics of soils and foundations through critical state soil mechanics, McGraw-Hill, Bershire, USA, 256-274.
5.Barnes, H.A., Hutton, J.F. and Walters, K. (1989): An introduction to rheology, Elsevier, Amsterdam, the Netherlands.
6.Bisantino, T., Fischer, P. and Gentile, F. (2010): Rheological characteristics of debris-flow material in South-Gargano watersheds, Nat. Hazards, 54, 209-223.
7.Bishop, A. and Walker, V. (2005): Avalanche and landslide alert, Crabtree Publishing Co., New York, USA.
8.Blight, G.E. (1997): Destructive mudflows as a consequence of tailing dyke failures, Proc. Instn. Civ. Engrs. Geotech. Eng., 125, 9-18.
9.Blight, G. (2010): Geotechnical engineering for mine waste storage facilities, Taylor &; Francis Group, London, UK.
10.Bonzanigo, L., Oppizzi, P., Tornaghi, M. and Uggeri, A. (2006): Hydrodynamics and rheology: key factors in mechanics of large landslide, Proc. ECI Conf. in Geohazards, Lillehammer, Norway, 46, 1-15.
11.Britannica (1999): Mudflow <http://www.britannica.com/EBchecked/topic/39 5994/mudflow> (Dec. 20, 2008).
12.Calligaris, C., Boniello, M.A. and Zini, L. (2008): Debris flow modeling in Julian Alps using FLO2D, WIT Transaction on Engineering Sciences, 60, 81-88.
13.Carter, M. and Bentley, S.P. (1993): Correlations of soil properties. Pentech Press Publishers: London, UK.
14.Casagrande, A. (1932): Research on the Atterberg Limits of soils, Public Roads, Vol. 13(8), 121 – 130.
15.Casarin, C. and Mair, R.J. (1981): The assessment of tunnel stability in clay by model tests, Soft ground tunneling, A.A. Balkema, Rotterdam, the Netherlands, 33-44.
16.Chen, C.L. (1988): General solutions for viscoplastic debris flow, J. Hydraulic Engineering, 114(3), 259-282.
17.Chen, C.P. (2009): A simulation and analysis of Maokong mudflow, Master Thesis, Dep. of Construction Eng., National Taiwan Univ. of Science and Tech., Taipei, ROC.
18.Chen, F. H. (2000): Soil engineering: testing , design and remediation, CRC Press, Boca Raton, USA.
19.Chen, H. (1987): The stability and mechanical behavior of colluviums slopes in Taiwan, Master Thesis, Univ. of London, London, UK.
20.Chen, H., Chen, R.H., Yu, F.C. and Hung, J.J. (2004): The inspection of the triggering mechanics for a hazardous mudflow in an urbanized territory, Environ. Geol., 45, 899-906.
21.Chien, N. and Ma, H. (1958): Properties of slurry flows, J. Sediment Res., 3(3), Beijing, China (in Chinese).
22.Choussot, P., Proust, S.and Ancey, C. (1996): Rheological interpretation of deposits of yield stress fluids, J. Non-Newtonian Fluid Mech, 66, 55 – 70.
23.Clover (2008): When will the mountain restore the original appearance?. <http://tw.myblog.yahoo.com/mf-zamf/article?mid=538&;prev=-2&;next=-2&;page=1&;sc=1#yartcmt> ( Nov. 9, 2008) (in Chinese).
24.Coduto, D.P. (1999): Geotechnical engineering, Pearson Education, Inc., New Delhi, India.
25.COE (1997): Technical engineering and design guide No.19, U.S. Army Corps of Engineers, Washington, D.C., USA.
26.Craig, R.F. (2004): Craig’s soil mechanics, Taylor &; Francis, Oxon, USA.
27.Cruden, D.M. and Varnes, D.J. (1996): Landslide types and processes, Landslides: investigation and mitigation, Transp. Res. Board., 36-75.
28.d’Agostino, V. and Tecca, P.R. (2006): Some considerations on the application of the FLO-2D model for debris flow hazard assessment, WIT Transactions on Ecology Environment, 90, 159-170.
29.Das, B. M. (2008): Advanced soil mechanics . Taylor &; Francis, New York, USA.
30.Darso (2010): Landslide at Waringin Mt. < http://www.slideboom.com/presenta-tions/155087/Longsor-Gunung-Waringin-Menimpa-Kebun-Teh-Dewata> (June 28, 2010) (in Indonesia).
31.de Blasio, F.V., Elverhoi, A., Issler, D., Harbitz, C.B., Bryn, P. and Lien, R. (2004): Flow models of natural debris flows originating from overconsolidated clay materials: Marine Geology, 213, 439 – 455.
32.Dai, J., Chen, W. and Zhou, B. (1980): An experimental study of slurry transport in pipes, Proc. Int. Symp. on River Sedimentation, Beijing, China, 195-204.
33.Day, R.D. (1999): Forensic study and foundation engineering, McGraw-Hill, New York, USA.
34.Denn, M.M. and Bonn, D. (2010): Issues in the flow of yield-stress liquids, Rheol Acta, 50(4), 307-315.
35.Dinger, D.R. (2002): Rheology for ceramists, Morris Publishing, Kearney, USA.
36.Dinger, D.R. (2005): Characterization techniques for cheramists, Morris Publishing, Kearney, USA.
37.Dolinar, B. and L. Trauner. (2004). Liquid limit and specific surface of clay particles. Geotechnical Testing J., Vol. 27(6), 1 – 5.
38.Douglas, J.F. (1975): Solution of problems in fluid mechanics, Pitman, London, UK.
39.Ellen, S.D. and Fleming, R.W. (1987): Mobilization of debris flows from soil slips, San Francisco Bay Region, California, Reviews in Eng. Geol., 7, 31-40.
40.Faas, R.W. (1991): Rheological boundaries of mud: where are the limits, Geo-Marine Letters, 11, 143-146.
41.Fang, H.Y. and Daniels, J.L. (2006): Introductory geotechnical engineering – an environmental perspective, Taylor &; Francis, London, UK.
42.Fathani, T.F. (2006): The Analysis of Earthquake-Induced Landslides with a Three-Dimensional Numerical Model, Proc. National Geotechnics Seminar, Gajah Mada University, Yogyakarta, 159-165.
43.Fei, X.J. (1981): Bingham yield stress of sediment water mixtures with hyperconcentration, J. Sediment Res., 3, 19-28 (in Chinese).
44.Ferraris, C. and Winpigler, J. (2000): Bingham model concept: measuring rheological properties of cement-based materials, National Institute of Standard and Tech., Gaithersburg, USA.
45.Flodin, N. and Broms, B. (1981): Landslides, history of civil engineering in soft clay, Soft clay engineering, eds. Brand, E. W. and Brenner, R.P. Elsevier , Amsterdam, the Netherlands.
46.FLO-2D (2004): Flood routing model, Version 2007.06.
47.Franzi, L. (2000): On the effect of clays on collisional stresses in debris flow, Proc. 2nd IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Obihiro, Japan, 375-384.
48.Fritz, W. and Moore, J.N. (1988): Basics of physical stratigraphy and sedimentology, John Wiley and Sons, New York, USA.
49.Giancoli, D.C. (2000): Physics for scientists and engineers, 3rd ed, Prentice Hall, New Jersey, USA.
50.Gonzalez, D.A., Ledesma, A. and Corominas, J. (2008): Viscous component in slow moving landslides: a practical use, Proc. Landslides and Engineered Slopes from the Past to the Future, CRC Press, London, UK, 237-242.
51.Handy, R.L. and Spangler, M.G. (2007): Geotechnical engineering: soil and foundation principles and practice, McGraw-Hill, New York, USA.
52.Harder, D.W. (2005): Numerical methods for electrical and computer engineers. <http://www.ece.uwaterloo.ca/~ece204/TheBook/00Introduction/> (May 5, 2008).
53.Hadmoko, D.S., Christanto, N., Mei, E.W., Utomo, L.P., Setiawan, M.A., Sartohadi, J., Purwoarminta, A., Winaryo, Radtya, T., Mujiono and Tivianton, T.A. (2008): Rapid assessment of mass movement at Tawangmangu, Karanganyar District, Central Java, Proc. Reflection of Natural Disaster on 2007 and Anticipation on 2008. Yogyakarta, Gajah Mada University, Indonesia (in Indonesia).
54.Hendriks, F. (2009): Rheological parameters and numerical analysis of cohesive soils for the Maokong landslide, Master Thesis, Dep. of Construction Eng., National Taiwan Univ. of Science and Tech., Taipei, ROC.
55.Hencher, S. (2012): Practical engineering geology, Spon Press, New York, USA.
56.Holtz, R.D., Kovacs, W.D. and Sheahan, T.C. (2011): Introduction to geotechnical engineering, 2nd ed., Pearson Education, New York, USA.
57.Hough, B.K. (1957): Basic soil engineering, Cornell University, New York, USA.
58.Huang, X. and Garcia, M.H. (1998): A Herschel-Bulkley model for mud flow down a slope, J. Fluid Mech., 374, 305-333.
59.Hungr, O., Evans, S.G., Bovis, M.J. and Hutchinson, J.N. (2001): A review of the classification of landslides of the flow type, Environ. and Eng. Geoscience. VII(3), 221-238.
60.Hunt, R.E. (2007): Geologic hazards – a field guide for geotechnical engineers, Taylor &; Francis, Boca Rotan, USA.
61.Ishibashi, I. and Hazarika, H. (2011): Soil mechanics fundamentals, CRC Press, Boca Raton, USA.
62.Jenskins, A., Ashworth, P.I., Ferguson, R.I., Grieve, I.C., Rowling P. and Stott, T.A. (1988): Slope failures in the Orchil Hills, Scotland, November 1984, Earth. Surf. Proc. Landf., 13(1), 69-76.
63.Jeong, S.W. (2010): Grain size dependent rheology on the mobility of debris flow, Geoscience J., 14(4), 359-369.
64.Julien, P.Y. and Y. Lan (1991): Rheology of hyperconcentrations, J. Hydraulic Eng., 117 (3), 346 – 353.
65.Julien, P.Y. and Leon, C. (2000): Mud floods, mudflows and debris flows classification, rheology and structural design, Int. Workshop on Mudflows and Debris Flows, Caracas, Venezuela, 1-15.
66.Kang, Z. and Zhang, S. (1980): A preliminary analysis of the characteristics of debris flow, Proc. Int. Symp. on River Sedimentation, Chinese Society for Hydraulic Eng., Beijing, China, 225-226 (in Chinese).
67.Kearey, P. (1996): Dictionary of geology, Penguin Reference, London, UK.
68.Keedwell, M.J. (1984): Rheology and soil mechanics, Elsevier, London, UK.
69.Kezdi, A. (1974): Handbook of soil mechanics, Elsevier, Amsterdam, the Netherlands.
70.Kobashi, S. and K. Sassa. (1990): To prevent landslides and slope disasters, Sankaido Publ. Co., Ltd, Japan.
71.Koesmono, M., Kusnama and Suwarna, N. (1996): Geological map of the Sindangbarang and Bandarwaru quadrangles-Jawa, Geological Research and Development Centre, Bandung, Indonesia.
72.Kooistra, A., Verhoef, P.N.W., Broere, W., Ngan-Tillard, D.J.M. and van Tol, A.F. (1998): Appraisal of stickiness of natural clays from laboratory tests, Proc. National Symposium of Eng. Geol. and Infrastructure, Delft, the Netherlands, 101-113.
73.Krizek, R.J. (2004): Slurries in geotechnical engineering, 12th Spencer J. Buchanan Lecture, Texas A&;M Univ., Texas, USA.
74.Krynine, D.P. and W. R. Jadd. (1957): Landslide and other crustal displacement: principles of engineering geology and geotechnics, McGraw-Hill, New York, USA.
75.Lal, R. and Shukla, M.K. (2004): Principles of soil physics, Marcel Dekker, New York, USA.
76.Lee, C.J., Wu, B.R., Chen, H.T. and Chiang, K.H. (2006): Tunnel stability and arching effects during tunneling in soft clayey soil, Tunnelling and Underground Space Technology, 21, 119-132.
77.Lee, S.H.H., Widjaja, B., Yao, J.H. and Yu, D. (2008): A proposed method determining liquid limit based on shear strength, Proc. Contributions of Geotech. Eng. to Sustainable Civil Constructions, Bandung, Indonesia, 1-5.
78.Lee, S.H.H., Du, Y. and Lin, B.H. (2009): Effect of feldspar content on the rheological parameters of mudflow, Proc. 13th Conf. on Current Researches in Geotech. Eng. in Taiwan, Taipei, R.O.C, A40, 1-5 (in Chinese).
79.Lee, S.H.H. and Widjaja, B. (2011): Deriving viscosity by interpreting the displacement profile for describing mudflow behavior, Proc. of Chinese Soil and Water Conservation Society Annual Convention and Conf., Taichung, ROC, 1-7.
80.Lee, S.H.H. and Widjaja, B. (2012) Phase concept for mudflow based on the influence of viscosity. Soils and Foundations (in press, accepted for publication on 27 July 2012).
81.Lin, B.H. (2008): The study of relationship between two feldspar kaolin of rheological parameters for mudflow, Master Thesis, Dep. of Construction Eng., National Taiwan Univ. of Science and Tech., Taipei, ROC.
82.Liu, J.G. and Mason, P.J. (2009): Essential image processing and GIS for remotes sensing, Wiley-Blackwell, West Sussex, UK.
83.Locat, J. (1997): Normalized rheological behavior of fine muds and their flow properties in a pseudoplastic regime, Proc. 1st Int. Conf. on Debris Flow Hazards Mitigation, San Fransisco, USA, 260-269.
84.Locat, J. and Demers, D. (1988): Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays, Canadian Geotech. J., 25(4), 799-806.
85.Lorenzini, G. and Mazza, N. (2004): Debris flow phenomology and rheological modeling, WIT Press, Southampton, UK.
86.Lumb, P. (1962): Effect of rainstorms on slope stability, Proc. Symp. Hong Kong Soils, Hong Kong, 73 – 87.
87.Mahajan, S.P. and Budhu, M. (2006): Viscous effects on penetrating shafts in clays, Acta Geotechnica, 1, 157–165.
88.Mahajan, S.P. and Budhu, M. (2008): Shear viscosity of clays to compute viscous resistance, Proc. 12th Int. Conf. of Int. Ass. for Computer Methods and Advances in Geomechanics, Goa, India, 1516-1523.
89.Mainali, A. and Rajaratnam, N. (1994): Experimental study of debris flows, J. Hydraul. Eng., 120(1), 104-123.
90.Major, J.J., et al. (2005): Debris Flows at Mount St. Helens, Washington, USA, eds M. Jacob and O. Hungr, Debris - flow Hazards and Related Phenomena, 685 – 731.
91.Marfai, M.A., King, L., Singh, L.P., Mardiatno, D., Sartohadi, J., Hadmoko, D.S. and Dewi, A. (2008): Natural hazards in Central Java Province, Indonesia: an overview, Environ. Geol., 56, 335-351.
92.Michael, E.D. (2009): The character of a mudflow, Malibu Geology. <http://www.malibugeology.com/mudflow.html> (Feb. 24, 2011).
93.Mikhailov, N.M. and Rebinder, P.A. (1955): On structural and mechanical properties of dispersed and high-polymeric systems, Colloid. J., 18(2).
94.Mitchell, J.K. and Soga, K. (2005): Fundamentals of soil behavior, 3rd ed., John Wiley and Sons, New Jersey, USA.
95.Morris, P.H. (2003): Compressibility and permeability correlations for fine grained dredged materials, J. of Waterway, Port, Coastal and Ocean Eng., 129(4), 188 – 191.
96.Mulfinger, G. and Donald, D.E. (1995): Earth science for christian schools, 2nd ed., Bob Jone University Press, South Carolina, USA.
97.Murck, B.W. and Skinner, B.J. (1999): Understanding our planet, John Wiley and Sons, New York, USA.
98.Neary, D.G. and Swift, L.W. (1987): Rainfall thresholds for triggering a debris avalanching event in the southern Appalachian mountains, Reviews in Eng. Geology, 7: 81-92.
99.O’Brien, J.S. (1986): Physical processes, rheology and modeling of mudflow, PhD Dissertation, Dep. of Civil Eng., Colorado State Univ., Fort Collins, USA.
100.O’Brien, J.S. and Julien, P.Y. (1988): Laboratory analysis of mudflow properties, J. Hydraul. Eng., 114(8), 877-887.
101.O’Brien, J.S., Julien, P.Y. and Fullerton, W.T. (1993): Two-dimensional water flood and mudflow simulation, J. Hydraul. Eng., 119(2), 244-259.
102.O’Brien, J.S. (2003): Reasonable assumptions in routing a dam break mudflow, Proc. of Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, eds Rickenmann and Chen, Switzerland.
103.Olson, E.P. (1989): Croft flows, Engineering Geology and Geotech. Eng., Balkema, Rotterdam, the Netherlands, 97-100.
104.Pariseau, W.G. (2008): Design analysis in rock mechanics: solution manual, Taylor &; Francis, London, UK.
105.Petkovsek, A., Macek, M., Kocevar, M., Benko, I. and Majes, B. (2009): Soil matric suction as an indicator of the mud flow occurrence, Proc. 17th Int. Conf. on Soil Mechanics and Geotech. Eng., Alexandria, Egypt, 1855-1860.
106.Petley, D. (2009): Emerging news of landslides triggered by the Sumatra earthquake. <http://daveslandslideblog.blogspot.com/2009/10/emerging-news-of-landslides-triggered.html> (Nov. 9, 2009).
107.Potts, D.M. and Zdravkovic, L. (2001): Finite element analysis in geotechnical engineering: application, Thomas-Telford, London, U.K.
108.Potter, P.E., Maynard, J.B. and Depetris, P.J. (2005): Mud and mudstones: introduction and overview, Springer-Verlag, Berlin, Germany.
109.Rahn, P.H. (1986): Mass wasting, Chapter 6, Engineering geology-an environmental approach, Elsevier, Amsterdam, the Netherlands.
110.Rajapakse, R. (2008): Geotechnical engineering calculations and rules of thumb, Butterworth Heinemann, Maryland, USA.
111.Ritchie, A.M. (1958): Recognition and identification of landslides, Landslides and engineering practice, Highway Research Board Special Report, 29, 21 – 47.
112.Rodriguez, A.R., Castillo, H.D. and Sowers, G.F (1988): Soil Mechanics in highway engineering, Trans Tech Pub., Germany. Russel, E.R. and Mickle, J.L. (1970): Liquid limit values by soil moisture tension. J. Soil Mech. Found., 96(3), 967–989.
113.Sadisun, I.A. (2010): Ciwidey landslide, Pikiran Rakyat, Bandung, Indonesia.
114.Sampurno and Samodra, H. (1997): Geological map of the Ponorogo quadrangles-Jawa, Geological Research and Development Centre, Bandung, Indonesia.
115.Schor, H.J. and Gray, D.H. (2007): Landforming, John Wiley &; Sons, New Jersey, USA.
116.Schrott L., Dikau, R. and Brunden, D. (1996): Soil flow (mudflow), Landslide recognition, identification, movement, and causes, John Wiley &; Sons, Chichester, UK, 181-187.
117.Scott, R.F. (1963): Principles of soil mechanics, Addison-Wesley Publ. Comp. Inc. Massachusetts, USA.
118.Sharma, V. K. (2010). Introduction to process geomorphology, CRC Press, Boca Raton, USA.
119.Shaughnessy, E.J., Katz, I.M. and Schaffer, J.P. (2005): Governing equation of fluid dynamics, Introduction to Fluid Mechanics, Oxford University Press, New York, USA.
120.Sidle, R.C. and Ochiai, H. (2006): Landslides-processes, prediction, and land use, American Geophysical Union, Washington D.C., USA.
121.Sitar, N., Anderson, S.A, and Johnson, K.A. (1992): Condition for initiation of rainfall-induced debris flow, Stability and Performance of Slopes and Embankmnet II, 1, 834 – 848.
122.Skempton, A. W. (1953): Soil mechanics in relation to geology. Yorkshire Geological Society, Yorkshire, USA.
123.Skempton, A.W. and Northey, R.D. (1953): The sensitivity of clays, Geotechnique, 3, 30 – 53.
124.Skinner, B.J. and Porter, S.C. (1995): The dynamic earth – an introduction to physical geology, 3rd ed., John Wiley &; Sons, Inc., New York, USA.
125.Sosio, R., Crosta, G.B. and Frattini, P. (2007): Field observations, rheological testing and numerical modeling of a debris-flow event, Earth Surf. Process. Landforms, 43, 290-306.
126.Stephenson, D. and Meadows, M.E. (1986): Kinematic hydrology and modeling, Elsevier Pub., Amsterdam, the Netherlands.
127.TPCEA, TCGEO, TSWCB and TPSEA (2008): Report on mudflow disaster at Chengchi University Flower Garden Estate, Taipei City next the mountain Wanshoulu Lane 75 due to Typhoon Jangmi, Taipei Professional Civil Engineers Association, Taipei City Geotechnical Engineering Office, Taipei Soil and Water Conservation Bureau, and Taipei Professional Structural Engineers Association, Taipei, Republic of China.
128.Takahashi, T. (2007): Debris flow: mechanics, prediction and countermeasures, Taylor and Francis, London, UK.
129.Takahashi, T. (1991): Debris flow, Monograph of IAHR, A.A. Balkema, Rotterdam, the Netherlands.
130.Takahashi, T. (1981): Debris Flow, Ann. Reo. Fluid Mech ,13, 57 – 77.
131.Takahashi, T. (1980): Debris flow on prismatic open channel, J. of Hydraulic Eng., 106 (HY3), 381 – 396.
132.Ter-Stepanian, G. (2000): Quick clay landslides: their enigmatic features and mechanism, Bull. Eng. Geol. Environ., 59, 47–57.
133.Terzaghi, K., (1950): Mechanism of landslides, Application of geology to engineering practice, Geological Society of America, New York, USA, 83–123.
134.Terzaghi, K. (1943): Arching in ideal soils, Chapter V, Theoretical soil mechanics, John Wiley &; Sons, New York, USA, 66-76.
135.Terzaghi, K., Peck, R.B. and Mesri, G. (1996): Soil mechanics in engineering practice, 3rd ed., John Wiley &; Sons, New York, USA.
136.Tsuji, Y. (2008): Solid-fluid multiphase flow, Dept. of Mechanical Eng., Osaka Univ. (Sep. 8, 2008).
137.USGS (2010): Difference between slide and flow. <http://www.profimedia.si/picture/landslides-and-mud-flows/0088784198/> (Feb. 22, 2011).
138.Vallejo, L.E. and Scovazzo, V.A. (2003): Determination of the shear strength parameters associated with mudflows, Soils and Foundations, 43(2), 129-133.
139.Varnes, D.J. (1978): Slope movement types and processes, Landslides: Analysis and Control, Transp. Research Board, Washington D.C., USA.
140.Vaughan, P.R. (1994): Assumption, prediction, and reality in geotechnical engineering, Geotechnique, 44(4), 573 – 609.
141.Vulliet, L. and Hutter, K. (1988): Viscous-type sliding laws for landslides, Canadian Geotech. J., 25, 467-477.
142.Vyalov, S.S. (1986): Rheological fundamentals of soil mechanics, Elsevier, Amsterdam, the Netherlands.
143.Waltham, T. (2004): Foundations of engineering geology, Spon Press, New York, USA.
144.Wati, S.E. (2010): Integrating landslide susceptibility into land capability assesment for spatial planning – A case study in Tawangmangu sub district, Karanganyar regency, Central Java, Indonesia, Master thesis, Graduate School Faculty of Geography, Gajah Mada University, Yogyakarta, Indonesia.
145.Wesley, L.D. (2010): Fundamentals of soil mechanics for sedimentary and residual soils, John Wiley &; Sons, New Jersey, USA.
146.Whipple, K. (2004): Surface processes and landscape evolution, MIT Open Course, MIT, USA.
147.Whyte, I.L. (1982): Soil plasticity and strength – a new approach using extrusion, Ground Engineering, 15(1), 16 – 24.
148.Widjaja, B. and Lee, S.H.H. (2012): Flow box test for the viscosity of soil in plastic and viscous liquid states, Soils and Foundations (in press, accepted for publication on 27 July 2012).
149.Woo, G. (1999): The mathematics of natural catastrophes, Imperial College Press, London, UK.
150.Woods, M. and Woods, M.B. (2007): Mudflows and landslides, Lerner Publications Co., Minneapolis, USA.
151.Woolhiser, D.A. (1975): Simulation of unsteady overland flow, Unsteady flow in open channels, Water Resources Publications, Fort Collins, USA.
152.Wroth, C.P. and Wood, D.M. (1978): The correlation of index properties with some basic engineering properties of soils, Canadian Geotechnical J., 15, 137-145.
153.Wu, L.Y. (1987): Stability analysis of arbitrary shape landslope by variational calculus and finite difference method, J. of the Chinese Inst.of Engineers, 10 (5), 473 – 483.
154.Yalcin, A. (2007): The effect of clay on landslide: a case study, Applied Clay Science, 38(1-2), 77-85.
155.Yang, T. (2008): Repairing of pile T16 Maokong after slope failure, Chang Shuo Engineering Consultants Ltd., Taipei, ROC.
156.Yao, C.H. (2007): The study of basic rheological parameters for the mudflow, Master Thesis, Dep. of Construction Eng., National Taiwan Univ. of Science and Tech., Taipei, ROC.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊