|
1.Abbot, P.L. (2004): Natural disasters, 4th ed., Mc-Graw Hill, New York, USA. 2.Ancey, C. (2010): Debris flow. Environmental geomechanics, John Wiley &; Sons, New Jersey, USA. 3.Arogyaswamy, R.N.P. (1992): Landslides, subsidences, creeps and displacements of non-tectonic origin, Geotech. application in civil eng., A.A. Balkema, Rotterdam, The Netherlands, 108-119. 4.Atkinson, J. (1993): Stability of slope, An introduction to the mechanics of soils and foundations through critical state soil mechanics, McGraw-Hill, Bershire, USA, 256-274. 5.Barnes, H.A., Hutton, J.F. and Walters, K. (1989): An introduction to rheology, Elsevier, Amsterdam, the Netherlands. 6.Bisantino, T., Fischer, P. and Gentile, F. (2010): Rheological characteristics of debris-flow material in South-Gargano watersheds, Nat. Hazards, 54, 209-223. 7.Bishop, A. and Walker, V. (2005): Avalanche and landslide alert, Crabtree Publishing Co., New York, USA. 8.Blight, G.E. (1997): Destructive mudflows as a consequence of tailing dyke failures, Proc. Instn. Civ. Engrs. Geotech. Eng., 125, 9-18. 9.Blight, G. (2010): Geotechnical engineering for mine waste storage facilities, Taylor &; Francis Group, London, UK. 10.Bonzanigo, L., Oppizzi, P., Tornaghi, M. and Uggeri, A. (2006): Hydrodynamics and rheology: key factors in mechanics of large landslide, Proc. ECI Conf. in Geohazards, Lillehammer, Norway, 46, 1-15. 11.Britannica (1999): Mudflow <http://www.britannica.com/EBchecked/topic/39 5994/mudflow> (Dec. 20, 2008). 12.Calligaris, C., Boniello, M.A. and Zini, L. (2008): Debris flow modeling in Julian Alps using FLO2D, WIT Transaction on Engineering Sciences, 60, 81-88. 13.Carter, M. and Bentley, S.P. (1993): Correlations of soil properties. Pentech Press Publishers: London, UK. 14.Casagrande, A. (1932): Research on the Atterberg Limits of soils, Public Roads, Vol. 13(8), 121 – 130. 15.Casarin, C. and Mair, R.J. (1981): The assessment of tunnel stability in clay by model tests, Soft ground tunneling, A.A. Balkema, Rotterdam, the Netherlands, 33-44. 16.Chen, C.L. (1988): General solutions for viscoplastic debris flow, J. Hydraulic Engineering, 114(3), 259-282. 17.Chen, C.P. (2009): A simulation and analysis of Maokong mudflow, Master Thesis, Dep. of Construction Eng., National Taiwan Univ. of Science and Tech., Taipei, ROC. 18.Chen, F. H. (2000): Soil engineering: testing , design and remediation, CRC Press, Boca Raton, USA. 19.Chen, H. (1987): The stability and mechanical behavior of colluviums slopes in Taiwan, Master Thesis, Univ. of London, London, UK. 20.Chen, H., Chen, R.H., Yu, F.C. and Hung, J.J. (2004): The inspection of the triggering mechanics for a hazardous mudflow in an urbanized territory, Environ. Geol., 45, 899-906. 21.Chien, N. and Ma, H. (1958): Properties of slurry flows, J. Sediment Res., 3(3), Beijing, China (in Chinese). 22.Choussot, P., Proust, S.and Ancey, C. (1996): Rheological interpretation of deposits of yield stress fluids, J. Non-Newtonian Fluid Mech, 66, 55 – 70. 23.Clover (2008): When will the mountain restore the original appearance?. <http://tw.myblog.yahoo.com/mf-zamf/article?mid=538&;prev=-2&;next=-2&;page=1&;sc=1#yartcmt> ( Nov. 9, 2008) (in Chinese). 24.Coduto, D.P. (1999): Geotechnical engineering, Pearson Education, Inc., New Delhi, India. 25.COE (1997): Technical engineering and design guide No.19, U.S. Army Corps of Engineers, Washington, D.C., USA. 26.Craig, R.F. (2004): Craig’s soil mechanics, Taylor &; Francis, Oxon, USA. 27.Cruden, D.M. and Varnes, D.J. (1996): Landslide types and processes, Landslides: investigation and mitigation, Transp. Res. Board., 36-75. 28.d’Agostino, V. and Tecca, P.R. (2006): Some considerations on the application of the FLO-2D model for debris flow hazard assessment, WIT Transactions on Ecology Environment, 90, 159-170. 29.Das, B. M. (2008): Advanced soil mechanics . Taylor &; Francis, New York, USA. 30.Darso (2010): Landslide at Waringin Mt. < http://www.slideboom.com/presenta-tions/155087/Longsor-Gunung-Waringin-Menimpa-Kebun-Teh-Dewata> (June 28, 2010) (in Indonesia). 31.de Blasio, F.V., Elverhoi, A., Issler, D., Harbitz, C.B., Bryn, P. and Lien, R. (2004): Flow models of natural debris flows originating from overconsolidated clay materials: Marine Geology, 213, 439 – 455. 32.Dai, J., Chen, W. and Zhou, B. (1980): An experimental study of slurry transport in pipes, Proc. Int. Symp. on River Sedimentation, Beijing, China, 195-204. 33.Day, R.D. (1999): Forensic study and foundation engineering, McGraw-Hill, New York, USA. 34.Denn, M.M. and Bonn, D. (2010): Issues in the flow of yield-stress liquids, Rheol Acta, 50(4), 307-315. 35.Dinger, D.R. (2002): Rheology for ceramists, Morris Publishing, Kearney, USA. 36.Dinger, D.R. (2005): Characterization techniques for cheramists, Morris Publishing, Kearney, USA. 37.Dolinar, B. and L. Trauner. (2004). Liquid limit and specific surface of clay particles. Geotechnical Testing J., Vol. 27(6), 1 – 5. 38.Douglas, J.F. (1975): Solution of problems in fluid mechanics, Pitman, London, UK. 39.Ellen, S.D. and Fleming, R.W. (1987): Mobilization of debris flows from soil slips, San Francisco Bay Region, California, Reviews in Eng. Geol., 7, 31-40. 40.Faas, R.W. (1991): Rheological boundaries of mud: where are the limits, Geo-Marine Letters, 11, 143-146. 41.Fang, H.Y. and Daniels, J.L. (2006): Introductory geotechnical engineering – an environmental perspective, Taylor &; Francis, London, UK. 42.Fathani, T.F. (2006): The Analysis of Earthquake-Induced Landslides with a Three-Dimensional Numerical Model, Proc. National Geotechnics Seminar, Gajah Mada University, Yogyakarta, 159-165. 43.Fei, X.J. (1981): Bingham yield stress of sediment water mixtures with hyperconcentration, J. Sediment Res., 3, 19-28 (in Chinese). 44.Ferraris, C. and Winpigler, J. (2000): Bingham model concept: measuring rheological properties of cement-based materials, National Institute of Standard and Tech., Gaithersburg, USA. 45.Flodin, N. and Broms, B. (1981): Landslides, history of civil engineering in soft clay, Soft clay engineering, eds. Brand, E. W. and Brenner, R.P. Elsevier , Amsterdam, the Netherlands. 46.FLO-2D (2004): Flood routing model, Version 2007.06. 47.Franzi, L. (2000): On the effect of clays on collisional stresses in debris flow, Proc. 2nd IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Obihiro, Japan, 375-384. 48.Fritz, W. and Moore, J.N. (1988): Basics of physical stratigraphy and sedimentology, John Wiley and Sons, New York, USA. 49.Giancoli, D.C. (2000): Physics for scientists and engineers, 3rd ed, Prentice Hall, New Jersey, USA. 50.Gonzalez, D.A., Ledesma, A. and Corominas, J. (2008): Viscous component in slow moving landslides: a practical use, Proc. Landslides and Engineered Slopes from the Past to the Future, CRC Press, London, UK, 237-242. 51.Handy, R.L. and Spangler, M.G. (2007): Geotechnical engineering: soil and foundation principles and practice, McGraw-Hill, New York, USA. 52.Harder, D.W. (2005): Numerical methods for electrical and computer engineers. <http://www.ece.uwaterloo.ca/~ece204/TheBook/00Introduction/> (May 5, 2008). 53.Hadmoko, D.S., Christanto, N., Mei, E.W., Utomo, L.P., Setiawan, M.A., Sartohadi, J., Purwoarminta, A., Winaryo, Radtya, T., Mujiono and Tivianton, T.A. (2008): Rapid assessment of mass movement at Tawangmangu, Karanganyar District, Central Java, Proc. Reflection of Natural Disaster on 2007 and Anticipation on 2008. Yogyakarta, Gajah Mada University, Indonesia (in Indonesia). 54.Hendriks, F. (2009): Rheological parameters and numerical analysis of cohesive soils for the Maokong landslide, Master Thesis, Dep. of Construction Eng., National Taiwan Univ. of Science and Tech., Taipei, ROC. 55.Hencher, S. (2012): Practical engineering geology, Spon Press, New York, USA. 56.Holtz, R.D., Kovacs, W.D. and Sheahan, T.C. (2011): Introduction to geotechnical engineering, 2nd ed., Pearson Education, New York, USA. 57.Hough, B.K. (1957): Basic soil engineering, Cornell University, New York, USA. 58.Huang, X. and Garcia, M.H. (1998): A Herschel-Bulkley model for mud flow down a slope, J. Fluid Mech., 374, 305-333. 59.Hungr, O., Evans, S.G., Bovis, M.J. and Hutchinson, J.N. (2001): A review of the classification of landslides of the flow type, Environ. and Eng. Geoscience. VII(3), 221-238. 60.Hunt, R.E. (2007): Geologic hazards – a field guide for geotechnical engineers, Taylor &; Francis, Boca Rotan, USA. 61.Ishibashi, I. and Hazarika, H. (2011): Soil mechanics fundamentals, CRC Press, Boca Raton, USA. 62.Jenskins, A., Ashworth, P.I., Ferguson, R.I., Grieve, I.C., Rowling P. and Stott, T.A. (1988): Slope failures in the Orchil Hills, Scotland, November 1984, Earth. Surf. Proc. Landf., 13(1), 69-76. 63.Jeong, S.W. (2010): Grain size dependent rheology on the mobility of debris flow, Geoscience J., 14(4), 359-369. 64.Julien, P.Y. and Y. Lan (1991): Rheology of hyperconcentrations, J. Hydraulic Eng., 117 (3), 346 – 353. 65.Julien, P.Y. and Leon, C. (2000): Mud floods, mudflows and debris flows classification, rheology and structural design, Int. Workshop on Mudflows and Debris Flows, Caracas, Venezuela, 1-15. 66.Kang, Z. and Zhang, S. (1980): A preliminary analysis of the characteristics of debris flow, Proc. Int. Symp. on River Sedimentation, Chinese Society for Hydraulic Eng., Beijing, China, 225-226 (in Chinese). 67.Kearey, P. (1996): Dictionary of geology, Penguin Reference, London, UK. 68.Keedwell, M.J. (1984): Rheology and soil mechanics, Elsevier, London, UK. 69.Kezdi, A. (1974): Handbook of soil mechanics, Elsevier, Amsterdam, the Netherlands. 70.Kobashi, S. and K. Sassa. (1990): To prevent landslides and slope disasters, Sankaido Publ. Co., Ltd, Japan. 71.Koesmono, M., Kusnama and Suwarna, N. (1996): Geological map of the Sindangbarang and Bandarwaru quadrangles-Jawa, Geological Research and Development Centre, Bandung, Indonesia. 72.Kooistra, A., Verhoef, P.N.W., Broere, W., Ngan-Tillard, D.J.M. and van Tol, A.F. (1998): Appraisal of stickiness of natural clays from laboratory tests, Proc. National Symposium of Eng. Geol. and Infrastructure, Delft, the Netherlands, 101-113. 73.Krizek, R.J. (2004): Slurries in geotechnical engineering, 12th Spencer J. Buchanan Lecture, Texas A&;M Univ., Texas, USA. 74.Krynine, D.P. and W. R. Jadd. (1957): Landslide and other crustal displacement: principles of engineering geology and geotechnics, McGraw-Hill, New York, USA. 75.Lal, R. and Shukla, M.K. (2004): Principles of soil physics, Marcel Dekker, New York, USA. 76.Lee, C.J., Wu, B.R., Chen, H.T. and Chiang, K.H. (2006): Tunnel stability and arching effects during tunneling in soft clayey soil, Tunnelling and Underground Space Technology, 21, 119-132. 77.Lee, S.H.H., Widjaja, B., Yao, J.H. and Yu, D. (2008): A proposed method determining liquid limit based on shear strength, Proc. Contributions of Geotech. Eng. to Sustainable Civil Constructions, Bandung, Indonesia, 1-5. 78.Lee, S.H.H., Du, Y. and Lin, B.H. (2009): Effect of feldspar content on the rheological parameters of mudflow, Proc. 13th Conf. on Current Researches in Geotech. Eng. in Taiwan, Taipei, R.O.C, A40, 1-5 (in Chinese). 79.Lee, S.H.H. and Widjaja, B. (2011): Deriving viscosity by interpreting the displacement profile for describing mudflow behavior, Proc. of Chinese Soil and Water Conservation Society Annual Convention and Conf., Taichung, ROC, 1-7. 80.Lee, S.H.H. and Widjaja, B. (2012) Phase concept for mudflow based on the influence of viscosity. Soils and Foundations (in press, accepted for publication on 27 July 2012). 81.Lin, B.H. (2008): The study of relationship between two feldspar kaolin of rheological parameters for mudflow, Master Thesis, Dep. of Construction Eng., National Taiwan Univ. of Science and Tech., Taipei, ROC. 82.Liu, J.G. and Mason, P.J. (2009): Essential image processing and GIS for remotes sensing, Wiley-Blackwell, West Sussex, UK. 83.Locat, J. (1997): Normalized rheological behavior of fine muds and their flow properties in a pseudoplastic regime, Proc. 1st Int. Conf. on Debris Flow Hazards Mitigation, San Fransisco, USA, 260-269. 84.Locat, J. and Demers, D. (1988): Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays, Canadian Geotech. J., 25(4), 799-806. 85.Lorenzini, G. and Mazza, N. (2004): Debris flow phenomology and rheological modeling, WIT Press, Southampton, UK. 86.Lumb, P. (1962): Effect of rainstorms on slope stability, Proc. Symp. Hong Kong Soils, Hong Kong, 73 – 87. 87.Mahajan, S.P. and Budhu, M. (2006): Viscous effects on penetrating shafts in clays, Acta Geotechnica, 1, 157–165. 88.Mahajan, S.P. and Budhu, M. (2008): Shear viscosity of clays to compute viscous resistance, Proc. 12th Int. Conf. of Int. Ass. for Computer Methods and Advances in Geomechanics, Goa, India, 1516-1523. 89.Mainali, A. and Rajaratnam, N. (1994): Experimental study of debris flows, J. Hydraul. Eng., 120(1), 104-123. 90.Major, J.J., et al. (2005): Debris Flows at Mount St. Helens, Washington, USA, eds M. Jacob and O. Hungr, Debris - flow Hazards and Related Phenomena, 685 – 731. 91.Marfai, M.A., King, L., Singh, L.P., Mardiatno, D., Sartohadi, J., Hadmoko, D.S. and Dewi, A. (2008): Natural hazards in Central Java Province, Indonesia: an overview, Environ. Geol., 56, 335-351. 92.Michael, E.D. (2009): The character of a mudflow, Malibu Geology. <http://www.malibugeology.com/mudflow.html> (Feb. 24, 2011). 93.Mikhailov, N.M. and Rebinder, P.A. (1955): On structural and mechanical properties of dispersed and high-polymeric systems, Colloid. J., 18(2). 94.Mitchell, J.K. and Soga, K. (2005): Fundamentals of soil behavior, 3rd ed., John Wiley and Sons, New Jersey, USA. 95.Morris, P.H. (2003): Compressibility and permeability correlations for fine grained dredged materials, J. of Waterway, Port, Coastal and Ocean Eng., 129(4), 188 – 191. 96.Mulfinger, G. and Donald, D.E. (1995): Earth science for christian schools, 2nd ed., Bob Jone University Press, South Carolina, USA. 97.Murck, B.W. and Skinner, B.J. (1999): Understanding our planet, John Wiley and Sons, New York, USA. 98.Neary, D.G. and Swift, L.W. (1987): Rainfall thresholds for triggering a debris avalanching event in the southern Appalachian mountains, Reviews in Eng. Geology, 7: 81-92. 99.O’Brien, J.S. (1986): Physical processes, rheology and modeling of mudflow, PhD Dissertation, Dep. of Civil Eng., Colorado State Univ., Fort Collins, USA. 100.O’Brien, J.S. and Julien, P.Y. (1988): Laboratory analysis of mudflow properties, J. Hydraul. Eng., 114(8), 877-887. 101.O’Brien, J.S., Julien, P.Y. and Fullerton, W.T. (1993): Two-dimensional water flood and mudflow simulation, J. Hydraul. Eng., 119(2), 244-259. 102.O’Brien, J.S. (2003): Reasonable assumptions in routing a dam break mudflow, Proc. of Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, eds Rickenmann and Chen, Switzerland. 103.Olson, E.P. (1989): Croft flows, Engineering Geology and Geotech. Eng., Balkema, Rotterdam, the Netherlands, 97-100. 104.Pariseau, W.G. (2008): Design analysis in rock mechanics: solution manual, Taylor &; Francis, London, UK. 105.Petkovsek, A., Macek, M., Kocevar, M., Benko, I. and Majes, B. (2009): Soil matric suction as an indicator of the mud flow occurrence, Proc. 17th Int. Conf. on Soil Mechanics and Geotech. Eng., Alexandria, Egypt, 1855-1860. 106.Petley, D. (2009): Emerging news of landslides triggered by the Sumatra earthquake. <http://daveslandslideblog.blogspot.com/2009/10/emerging-news-of-landslides-triggered.html> (Nov. 9, 2009). 107.Potts, D.M. and Zdravkovic, L. (2001): Finite element analysis in geotechnical engineering: application, Thomas-Telford, London, U.K. 108.Potter, P.E., Maynard, J.B. and Depetris, P.J. (2005): Mud and mudstones: introduction and overview, Springer-Verlag, Berlin, Germany. 109.Rahn, P.H. (1986): Mass wasting, Chapter 6, Engineering geology-an environmental approach, Elsevier, Amsterdam, the Netherlands. 110.Rajapakse, R. (2008): Geotechnical engineering calculations and rules of thumb, Butterworth Heinemann, Maryland, USA. 111.Ritchie, A.M. (1958): Recognition and identification of landslides, Landslides and engineering practice, Highway Research Board Special Report, 29, 21 – 47. 112.Rodriguez, A.R., Castillo, H.D. and Sowers, G.F (1988): Soil Mechanics in highway engineering, Trans Tech Pub., Germany. Russel, E.R. and Mickle, J.L. (1970): Liquid limit values by soil moisture tension. J. Soil Mech. Found., 96(3), 967–989. 113.Sadisun, I.A. (2010): Ciwidey landslide, Pikiran Rakyat, Bandung, Indonesia. 114.Sampurno and Samodra, H. (1997): Geological map of the Ponorogo quadrangles-Jawa, Geological Research and Development Centre, Bandung, Indonesia. 115.Schor, H.J. and Gray, D.H. (2007): Landforming, John Wiley &; Sons, New Jersey, USA. 116.Schrott L., Dikau, R. and Brunden, D. (1996): Soil flow (mudflow), Landslide recognition, identification, movement, and causes, John Wiley &; Sons, Chichester, UK, 181-187. 117.Scott, R.F. (1963): Principles of soil mechanics, Addison-Wesley Publ. Comp. Inc. Massachusetts, USA. 118.Sharma, V. K. (2010). Introduction to process geomorphology, CRC Press, Boca Raton, USA. 119.Shaughnessy, E.J., Katz, I.M. and Schaffer, J.P. (2005): Governing equation of fluid dynamics, Introduction to Fluid Mechanics, Oxford University Press, New York, USA. 120.Sidle, R.C. and Ochiai, H. (2006): Landslides-processes, prediction, and land use, American Geophysical Union, Washington D.C., USA. 121.Sitar, N., Anderson, S.A, and Johnson, K.A. (1992): Condition for initiation of rainfall-induced debris flow, Stability and Performance of Slopes and Embankmnet II, 1, 834 – 848. 122.Skempton, A. W. (1953): Soil mechanics in relation to geology. Yorkshire Geological Society, Yorkshire, USA. 123.Skempton, A.W. and Northey, R.D. (1953): The sensitivity of clays, Geotechnique, 3, 30 – 53. 124.Skinner, B.J. and Porter, S.C. (1995): The dynamic earth – an introduction to physical geology, 3rd ed., John Wiley &; Sons, Inc., New York, USA. 125.Sosio, R., Crosta, G.B. and Frattini, P. (2007): Field observations, rheological testing and numerical modeling of a debris-flow event, Earth Surf. Process. Landforms, 43, 290-306. 126.Stephenson, D. and Meadows, M.E. (1986): Kinematic hydrology and modeling, Elsevier Pub., Amsterdam, the Netherlands. 127.TPCEA, TCGEO, TSWCB and TPSEA (2008): Report on mudflow disaster at Chengchi University Flower Garden Estate, Taipei City next the mountain Wanshoulu Lane 75 due to Typhoon Jangmi, Taipei Professional Civil Engineers Association, Taipei City Geotechnical Engineering Office, Taipei Soil and Water Conservation Bureau, and Taipei Professional Structural Engineers Association, Taipei, Republic of China. 128.Takahashi, T. (2007): Debris flow: mechanics, prediction and countermeasures, Taylor and Francis, London, UK. 129.Takahashi, T. (1991): Debris flow, Monograph of IAHR, A.A. Balkema, Rotterdam, the Netherlands. 130.Takahashi, T. (1981): Debris Flow, Ann. Reo. Fluid Mech ,13, 57 – 77. 131.Takahashi, T. (1980): Debris flow on prismatic open channel, J. of Hydraulic Eng., 106 (HY3), 381 – 396. 132.Ter-Stepanian, G. (2000): Quick clay landslides: their enigmatic features and mechanism, Bull. Eng. Geol. Environ., 59, 47–57. 133.Terzaghi, K., (1950): Mechanism of landslides, Application of geology to engineering practice, Geological Society of America, New York, USA, 83–123. 134.Terzaghi, K. (1943): Arching in ideal soils, Chapter V, Theoretical soil mechanics, John Wiley &; Sons, New York, USA, 66-76. 135.Terzaghi, K., Peck, R.B. and Mesri, G. (1996): Soil mechanics in engineering practice, 3rd ed., John Wiley &; Sons, New York, USA. 136.Tsuji, Y. (2008): Solid-fluid multiphase flow, Dept. of Mechanical Eng., Osaka Univ. (Sep. 8, 2008). 137.USGS (2010): Difference between slide and flow. <http://www.profimedia.si/picture/landslides-and-mud-flows/0088784198/> (Feb. 22, 2011). 138.Vallejo, L.E. and Scovazzo, V.A. (2003): Determination of the shear strength parameters associated with mudflows, Soils and Foundations, 43(2), 129-133. 139.Varnes, D.J. (1978): Slope movement types and processes, Landslides: Analysis and Control, Transp. Research Board, Washington D.C., USA. 140.Vaughan, P.R. (1994): Assumption, prediction, and reality in geotechnical engineering, Geotechnique, 44(4), 573 – 609. 141.Vulliet, L. and Hutter, K. (1988): Viscous-type sliding laws for landslides, Canadian Geotech. J., 25, 467-477. 142.Vyalov, S.S. (1986): Rheological fundamentals of soil mechanics, Elsevier, Amsterdam, the Netherlands. 143.Waltham, T. (2004): Foundations of engineering geology, Spon Press, New York, USA. 144.Wati, S.E. (2010): Integrating landslide susceptibility into land capability assesment for spatial planning – A case study in Tawangmangu sub district, Karanganyar regency, Central Java, Indonesia, Master thesis, Graduate School Faculty of Geography, Gajah Mada University, Yogyakarta, Indonesia. 145.Wesley, L.D. (2010): Fundamentals of soil mechanics for sedimentary and residual soils, John Wiley &; Sons, New Jersey, USA. 146.Whipple, K. (2004): Surface processes and landscape evolution, MIT Open Course, MIT, USA. 147.Whyte, I.L. (1982): Soil plasticity and strength – a new approach using extrusion, Ground Engineering, 15(1), 16 – 24. 148.Widjaja, B. and Lee, S.H.H. (2012): Flow box test for the viscosity of soil in plastic and viscous liquid states, Soils and Foundations (in press, accepted for publication on 27 July 2012). 149.Woo, G. (1999): The mathematics of natural catastrophes, Imperial College Press, London, UK. 150.Woods, M. and Woods, M.B. (2007): Mudflows and landslides, Lerner Publications Co., Minneapolis, USA. 151.Woolhiser, D.A. (1975): Simulation of unsteady overland flow, Unsteady flow in open channels, Water Resources Publications, Fort Collins, USA. 152.Wroth, C.P. and Wood, D.M. (1978): The correlation of index properties with some basic engineering properties of soils, Canadian Geotechnical J., 15, 137-145. 153.Wu, L.Y. (1987): Stability analysis of arbitrary shape landslope by variational calculus and finite difference method, J. of the Chinese Inst.of Engineers, 10 (5), 473 – 483. 154.Yalcin, A. (2007): The effect of clay on landslide: a case study, Applied Clay Science, 38(1-2), 77-85. 155.Yang, T. (2008): Repairing of pile T16 Maokong after slope failure, Chang Shuo Engineering Consultants Ltd., Taipei, ROC. 156.Yao, C.H. (2007): The study of basic rheological parameters for the mudflow, Master Thesis, Dep. of Construction Eng., National Taiwan Univ. of Science and Tech., Taipei, ROC.
|