跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張北晨
研究生(外文):Pei-Cheng Chang
論文名稱:透過分析資訊需求變動修正工作特徵檔以提供工作相關資訊
論文名稱(外文):Profile Adaptation for Providing Task-relevant Information by Variation of Task Needs
指導教授:劉敦仁劉敦仁引用關係
指導教授(外文):Duen-Ren Liu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:41
中文關鍵詞:資訊過濾工作需求適性化技術工作特徵檔工作主題變動合作式工作特徵檔
外文關鍵詞:information filteringtask needsadaptive profiling techniqueself task profilevariation of task-needs on topicscollaborative profile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:2
在以工作為基礎的企業環境中,如何有效提供工作相關資訊以滿足知識工作者的資訊需求為部署知識管理系統之重要課題。此外,知識密集工作環境中的工作通常具有需要參閱大量文件資料的特性;因此,透過資訊過濾相關技術分析並建構工作者的工作相關特徵檔,為有效提供工作相關知識之重要技術。本研究提出需求特徵化修正方法來分析工作者的動態資訊需求,該方法主要是分析工作者存取的文件及工作主題相關性,並考慮時間因素建構工作特徵檔。此外本研究分析工作者在工作主題之需求變化以找出具相似主題需求變化的相似工作者,並進一步依據相似工作者的主題需求變化進行合作式調整工作特徵檔並推論潛在資訊需求。最後,本研究進行實驗評估,以比較所提方法在提供工作相關資訊之成效。
In task-based business environments, an important issue of deploying Knowledge Management System (KMS) is providing task-relevant information (codified knowledge) to fulfill the information needs of knowledge workers. In addition, workers need to access lots of textual documents in conducting knowledge-intensive tasks. Accordingly, effective knowledge management relies on using information filtering (IF) techniques to model worker's information needs as profiles and provide relevant information based on the modeled profiles. This research proposes a novel adaptive task-profiling technique to model worker's information needs on tasks, i.e., task-needs. The proposed technique adjusts task profiles to model worker's dynamic task-needs based on the documents accessed by workers and the relevance on the task-based topic taxonomy. Generally, the more recent the document accessed the more important it is to reflect a work's current task needs. Thus, the effect of time factor is considered in profile adaptation. In addition, the proposed profiling technique adopts a novel collaborative profile adaptation approach to adjust task profiles. We analyze the variations of workers' task needs on the topic taxonomy to identify workers with similar variations of task needs on topics (i.e., topic needs) over time. Similar workers' variations of topic needs are used to predict the target worker's future variations of topic needs, and are used to adjust the target worker's task profile. The codified knowledge that is relevant to the current task can be retrieved based on the adjusted task profile to fit the worker's dynamic task needs. Empirical experiments demonstrate that the proposed approach models workers' task-needs effectively and helps provide task-relevant knowledge.
1. Introduction 1
2. Literature review 4
2.1. Task-based knowledge management and retrieval 4
2.2. Information retrieval in a vector space model 5
2.3. User modeling by information filtering technique 6
2.4. Relevance feedback techniques 7
3. Overview of methodology 9
4. Modeling task needs 12
4.1. Capturing users' access behavior 12
4.2. Self profile adaptation 12
5. Measuring variations of user topic needs over Time 16
5.1. Variation measurement for a specific topic 16
5.2. Representation model: Topic-needs variation matrix 17
6. Collaborative profile adaptation 19
6.1. Identifying similar workers 19
6.2. Prediction of task needs 22
6.3. Result demonstrations 24
7. Experiments 28
7.1. Experimental setup 28
7.1.1. Experimental objective and design 28
7.1.2. Data and participants 29
7.1.3. Evaluation metrics 29
7.2. Experimental result and observations 30
7.2.1. Experiment 1-1: parameter selection for TP-V method 30
7.2.2. Experiment 1-2: parameter selection for TP-D method 31
7.2.3. Experiment 2: comparisons of self profile adaptation methods 32
7.2.4. Experiment 3: comparisons of various methods 34
7.2.5. Case inspections 35
7.2.6. Discussions 36
8. Conclusion and future research issues 38
Reference 39
[1] A. Abecker, A. Bernardi, K. Hinkelmann, O. Kuhn, M. Sintek, "Context-aware, proactive delivery of task-specific information: the KnowMore Project," Information Systems Frontiers, 2(3/4), pp.253-276, 2000a.
[2] A. Abecker, A. Bernardi, H. Maus, M. Sintek, C. Wenzel, "Information Supply for Business Processes: Coupling Workflow with Document Analysis and Information Retrieval," Knowledge Based Systems, 13(1), pp.271-284, 2000b.
[3] R. Baeza-Yates, B. Ribeiro-Neto, "Modern Information Retrieval," New York: The ACM Press, 1999.
[4] M. Balabanovi'c, "An Adaptive Web Page Recommendation Service," Proceedings of the First International conference on Autonomous Agents, Marina del Rey, CA, pp.378-385, February, 1997.
[5] N.J. Belkin, W.B. Croft, "Information Filtering and Information Retrieval: Two Sides of the Same Coin?" Communications of the ACM, 35(12), pp.29-38, 1992.
[6] P. D. Bra, G. J. Houben, F. Dignum, "Task-Based Information Filtering: Providing Information that is Right for the Job," Proceedings of INFWET97, http://wwwis.win.tue.nl/infwet97/proceedings/task-based.html, 1997.
[7] J.S. Brown, P. Duguid, "Organization Learning and Communities of Practice," Organization Science, 2(1), pp.40-57, 1991.
[8] A. Celentano, M. G. Fugini, S. Pozzi,"Knowledge-based document retrieval in office environment: The Kabiria system," ACM Transactions on Information Systems, 13(3), pp.237-268, 1995.
[9] T. H. Davenport, L. Prusak, "Working Knowledge: How Organizations Manage what they know," Boston MA: Harvard Business School Press, 1998.
[10] J. Davies, A. Duke, A. Stonkus, "OntoShare: Using Ontologies for Knowledge Sharing," Proceedings of the 11th International WWW Conference WWW2002, Hawaii, USA, 2002.
[11] K. D. Fenstermacher, C. Marlow, "Supporting Consultants with Task-Specific Information Retrieval," Proceedings of The American Association of Artificial Intelligence, Orlando Florida: AAAI Press, 1999.
[12] K. D. Fenstermacher, "Process-Aware Knowledge Retrieval," Proceedings of the 35th Hawaii International Conference on System Sciences, Big Island, Hawaii, USA, pp.209-217, 2002.
[13] G. Fischer, J. Ostwald, "Knowledge Management: Problems, Promises, Realities, and Challenges," IEEE Intelligent Systems, 16(1), pp.60-73, 2001.
[14] D. Goldberg, B. M. Nichols, Oki, D. Terry, "Using Collaborative Filtering to Weave an Information Tapestry," Communications of the ACM, 35(12), pp.61-70, 1992.
[15] P. H. Gray, "The Impact of Knowledge Repositories on Power and Control in the Workplace," Information Technology & People, 14(4), pp.368-384, 2001.
[16] J. Hahn, M. Subramani, " A Framework of Knowledge Management Systems: Issues and Challenges for Theory and Practice," Proceedings of the 21st International Conference on Information Systems, Brisbane, Australia, pp.302-312, 2000.
[17] A. Kankanhalli, F. Tanudidjaja, J. Sutanto, C.Y. Tan (Bernard), "The Role of IT in Successful Knowledge Management Initiatives," Communications of ACM, 46(9), pp.69-73, 2003.
[18] J. Koh, Y.-G. Kim, "Knowledge Sharing in Virtual Communities: An e-Business Perspective," Expert Systems with Applications, 26, pp.155-166, 2004.
[19] D.-R. Liu, I.-C. Wu, and K.-S. Yang (2005), "Task-based K-Support System: Disseminating an Sharing Task-relevant Knowledge," Expert Systems with Applications, 29(2), pp.408-423, 2005.
[20] D. W. McDonald, M.S. Ackerman, "Expertise Recommender: A Flexible Recommendation System and Architecture," Proceedings of the ACM 2000 Conference on Computer Supported Cooperative Work, Philadelphia, PA, pp.231-240, 2000.
[21] S. E. Middleton, N. R. Shadbolt, D. C. Roure, "Ontological User Profiling in Recommender Systems," ACM Transaction on Information Systems, 22(1), pp.54-88, 2004.
[22] J. Mostafa, S. Mukhopadhyay, W. Lam, M. Palakal, "A Multi-level Approach to Intelligent Information Filtering: Model, System and Evaluation," ACM Transactions on Information Systems, 15(4), pp.368-399, 1997.
[23] S. Mukhopadhyay, J. Mostafa, M. Palakal, "An Adaptive Multi-level Information Filtering System," Proceedings of the Fifth International Conference on User Modeling, pp.21-28, 1996.
[24] I. Nonaka, "A Dynamic Theory of Organizational Knowledge Creation," Organization Science, 5(1), pp.14-37,1994.
[25] J. Park, S. Hunting, "XML Topic Maps: Creating and using Topic Maps for the Web," Boston MA: Addison-Wesley, 2003.
[26] M. Pazzani, J. Muramatsu, D. Billus, "Syskill & Webert: Identifying Interesting Web Sites," Proceedings of the Thirteen National Conference on Artificial Intelligence, Portland, Oregon: AAAI Press., pp.54-61, 1996.
[27] M. Pazzani, D. Billsus, "Learning and Revising User Profiles: The Identification of Interesting Web Sites," Machine Learning 27, pp.313-331, 1997.
[28] P. Resnick, H.R. Varian, "Recommender Systems," Communications of the ACM, 40(3), pp.56-58, 1997.
[29] C. J. v. Rijsbergen, "Information Retrieval," Butterworths, London, 1979.
[30] J. J. Rocchio, "Relevance Feedback in Information Retrieval," in: G. Salton (Eds), The SMART Retrieval System: Experiments in Automatic Document Processing, Englewood Cliffs, NJ: Prentice Hall, pp.313-323, 1971.
[31] T. Rodden, "A survey of CSCW Systems," Interacting with Computers, 3(3), pp.319-353, 1991.
[32] G. Salton, C. Buckley, "Term Weighting Approaches in Automatic Text Retrieval," Information Processing & Management, 24(5), pp.513-523, 1988.
[33] G. Salton, C. Buckley, "Improving Retrieval Performance by Relevance Feedback," Journal of the American Society for Information Science, 41(4), pp.288-297, 1990.
[34] F. Sebastiani, "Machine Learning in Automated Text Categorization: A Survey," Technical report, Istituto di Elaborazione dell'Informazione, C.N.R., Pisa, Italy, 1999.
[35] A. Sieg, B. Mobasher, R. Burke, "Inferring User's Information Context: Integrating User Profiles and Concept Hierarchies,", Proceedings of the 2004 Meeting of the International Federation of Classification Societies, Chicago, USA, 2004.
[36] P. L. Wang, D. Soergel, "A Cognitive Model of Document Use during a Research Project. Study I. Document Selection," Journal of the American Society for Information Science and Technology, 49(2), pp.115-133, 1998.
[37] P. L. Wang, M. D. While, "A Cognitive Model of Document Use during a Research Project. Study II. Document at Reading and Citing stage," Journal of The American Society for Information Science and Technology, 50(20), pp.98-114, 1999.
[38] E. Wenger, R. McDemott, W. Snyder, "Cultivating Communities of Practice," Harvard Business School Press, 2002.
[39] D. H. Widyantoro, T. R. loerger, J. Yen, "Learning User Interest Dynamics with a Three-Descriptor Representation," Journal of the American Society for Information Science and Technology, 52(3), pp.212-225, 2001.
[40] I.H. Witten, A. Moffat, T.C. Bell, Managing Gigabytes: Compressing and Indexing Documents and Images, 2nd edn., Morgan Kaufmann Publishers, Los Alto, USA, 1999.
[41] I-C. Wu, D.-R. Liu, W.-H. Chen, "Task-stage Knowledge Support Model: Coupling User Information Needs with Task Stage Identification," Proceeding of the IEEE 2005 International Conference on Information Reuse and Integration (IRI 2005), Las Vegas, USA, Aug. 2005, pp. 19-24.
[42] M. H. Zack, "Managing Codified Knowledge," Sloan Management Review, 40(4), pp.45-58, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top