|
[1]R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963. [2]R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 533–547, Sept. 1981. [3]J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA: Kaufmann, 1988. [4]D. MacKay and R. Neal, “Cood codes based on very sparse matrices,” in Cryptography and Coding, 5th IMA Conf. C. Boyd, Ed., Lecture Notes in Computer Science, pp. 100–111, Berlin, Germany Springer, 1995. [5]D. MacKay, “Good error correcting codes based on very sparse matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, March 1999. [6]H. Jin, A. Khandekar and R. McEliece, “Irregular repeat-accumulate codes,” Proc. 2nd Intl. Symp. on Turbo Codes and Related Topics, Brest, France, Sept. 2000, pp. 1–8. [7]H. D. Pfister and P. H. Siegel, “The serial concatenation of rate-1 codes through uniform random interleavers,” IEEE Trans. Inform. Theory, vol. 49, pp. 1425–1438, Jun. 2003. [8]M. Yang, Y. Li, and W. E. Ryan, “Design of efficiently-encodable moderate-length high-rate irregular LDPC codes,” Proc. 40th AnnualAllerton Conference on Communication, Control, and Computing, Oct. 2002, pp. 1415–1424. [9]C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun., vol. 44, pp. 1261–1271, Oct. 1996. [10]T. Richardson, A. Shokrollahi, and R. Urbanke, “The capacity of low-density parity check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599–618, Feb. 2001. [11]S.-Y. Chung, T. Richardson, and R. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inform. Theory, vol. 47, pp. 657–670, Feb. 2001. [12]S. ten Brink, G. Kramer, and A. Ashikhmin,“Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun., vol. 52, pp. 670–678, Apr. 2004. [13]J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 49, pp. 2141–2155, Sept. 2003. [14]A. Khandekar and R. Palanki, “Irregular repeat accumulate codes for non-binary modulation schemes,” in Proc. 2002 International Symposium on Information Theory, Lausanne, Switzerland, 2002, p. 171. [15]H. M. Tullberg and P. H. Siegel, “Serial concatenated TCM with an inner accumulate code - part I: maximum-likelihood analysis,” IEEE Trans. Inform. Theory, vol. 53, pp. 64–73, Jan. 2005. [16]H. M. Tullberg and P. H. Siegel, “Serial concatenated TCM with an inner accumulate codeXpart II: density-evolution analysis,” IEEE Trans. Inform. Theory, vol. 53, pp. 252–262, Feb. 2005. [17]A. Bennatan and D. Burshtein, “Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels” IEEE Trans. Inform. Theory, vol. 52, pp. 549–583, Feb. 2006. [18]G. Li, I. J. Fair, W. A. Krzymień, “Density evolution for nonbinary LDPC codes under Gaussian approximation,” IEEE Trans. Inform. Theory, vol. 55, pp. 997–1015, Mar. 2009. [19]M.-C. Chiu, “Bandwidth-efficient modulation codes based on nonbinary irregular repeat-accumulate codes,” IEEE Trans. Inform. Theory, vol. 56, pp. 152–167, Jan. 2010. [20]S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun., vol. 49, pp. 1727–1737, Oct. 2001. [21]A. Bennatan and D. Burshtein, “On the application of LDPC codes to arbitrary discrete-memoryless channels,” IEEE Trans. Inform. Theory, vol. 50, pp. 417–438, Mar. 2004. [22]J. Hagenauer, E. Offer, C. Méasson, and M. Mörz, “Decoding and equalization with analog non-linear networks” European Trans. Comm., pp. 659–680, Nov. 1999. [23]G. Li, I. J. Fair, and W. A. Krzymień, “Analysis of nonbinary LDPC codes using Gaussian approximation,” in Proc. IEEE Int. Symp. Information Theory, Yokohama, Japan, Jun./Jul. 2003, p. 234. [24]L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284–287, Mar. 1974. [25]M. C. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE Commun. Letters, vol. 2, pp. 165–167, Jun. 1998.
|