跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳明錄
研究生(外文):Ming-Lu Wu
論文名稱:基於訊息理論準則設計低複雜度天線陣列輔助之多使用者解調器
論文名稱(外文):Low Complexity Antenna Array-Assisted Multiuser Detection Based on Information Theoretic Criteria
指導教授:方文賢
指導教授(外文):Wen-Hsien Fang
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:114
中文關鍵詞:最小均方差使用者解調器消息理論準則動態通道分配無線通信
外文關鍵詞:minimum mean-squared errormultiuserinformation theoretic criteriadynamic channel assignmentwireless communications
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多使用者解調器在近代通訊研究中扮演著重要的角色,但隨著天線陣列的加入,多使用者解調器的複雜度更顯重要。本論文嘗試以消息理論準則為基礎,在TDMA系統中發展低複雜度的多使用者解調器,以期得到與CDMA相當的頻道使用率。
本論文第一個論述為我們在低頻率重複使用率下發展一低複雜度多使用者解調器。因同頻道干擾源在TDMA系統中之平均功率小於主要使用者功率,我們利用已估測的通道,根據同頻道干擾源每階的功率大小,保留較大功率階,而捨去較小功率者,以最小均方差準則設計低複雜度多使用者解調器。此外,我們亦針對此低複雜度多使用者解調器推導其位元錯誤率以及分析其計算複雜度。效能分析與計算機模擬結果驗證了此演算法能提供和全複雜度多使用者解調器近似的效能,但其所需的計算量卻大幅降低。
第二個論述在於以消息理論準則為基礎決定該低複雜度多使用者解調器所需之有效通道長度。我們首先利用已發展之消息理論準則決定有效通道長度,然後提出修改消息理論準則以將接收信號投影至同頻道干擾源空間與雜訊空間,有效地決定同頻道干擾源之通道長度,並應用於設計低複雜度多使用者解調器時可保留主要使用者的訊息。此外,我們亦針對此修改消息理論準則分析其一致性,並且與其它相關研究做比較與討論。基於以消息理論準則為基礎決定有效通道長度,模擬所得之效能相似於使用全通道長度之多使用者解調器。
最後,我們將該設計之低複雜度多使用者解調器結合動態通道分配技術,利用兩者之間補償的特性,以期得到更高的網路容量。我們使用距離與角度限制條件設計一新的動態通道分配方法以決定同一通道的合法使用者。利用此動態通道分配技術,同一通道內的使用者在時間與空間上更不具有相關性,故多使用者解調器可使用較少的同頻道干擾源訊息而得到相近的效能,如此可更進一步降低計算複雜度。模擬結果驗證了此結合演算法確實在較高的網路容量下得到較低的複雜度,而且也得到可接受的效能。

In this dissertation, a low complexity antenna array-assisted multiuser detection (MUD) which is based on the information theoretic criteria is proposed to detect the desired
signal in TDMA systems. The contributions of this dissertation
include the followings.
First, a low complexity antenna array-assisted minimum mean-squared error (MMSE) MUD is addressed, which utilizes only
partial information of the co-channel interferences (CCIs) in the demodulation process. In light of the fact that the power of the CCIs is lower than that of the desired user as the CCIs are out-of-cell in TDMA, the proposed approach truncates the channel length of the CCIs adaptively based on the power of the channel taps of the CCIs. As the truncated channel taps only account for negligible information of the CCIs, the performance does not substantially degrade. Moreover, the analytic expressions of the bit error rate (BER) performance for both of the full complexity and the proposed low complexity MMSE MUD are derived. Simulation results show that the simulations and the analytic results agree well in various scenarios, and that the performance remains close even if we truncate $60\%$ CCI channel length.
Second, information theoretic criteria, which include the Akaike information theoretic criterion (AIC) and Rissanen's minimum distance length (MDL) criterion, are employed to form a theoretic foundation to determine the effective CCI channel length in the developed MUD. Two information theoretic approaches are considered. The first one is a direct extension of the previous works. Aiming at keeping the information of the desired user intact in the truncation, we propose modified information theoretic criteria, which first project the received signals onto the CCIs subspace and the noise subspace before the embarkation of the information theoretic analysis. To assess the statistical behavior of the proposed criteria, the consistency property is also investigated. The built simulations show that the developed MUD with the effective CCI channel length determined by the information theoretic criteria yields indistinguishable performance as the full complexity counterpart.
Finally, to enhance the spectrum efficiency, we address a simple, yet effective dynamic channel assignment (DCA), which employs the angle constraints and distance constraints as the criteria to assign frequency bands. With a combination of the developed low complexity MUD and DCA, which are compensatory to each other, we can truncate more redundant information of the CCIs and thus achieve lower complexity, while still maintaining acceptable BER performance.

1 INTRODUCTION
1.1 Background and Related Works ………………………………2
1.2 Outline of Thesis ……………………………………………6
2 WIRELESS COMMUNICATION CHANNEL MODEL 10
2.1 Wireless Propagation channel ……………………………10
2.1.1 Path Loss ………………………………………………………11
2.1.2 Fading Characteristics ……………………………………11
2.1.3 Multipath Propagation ………………………………………13
2.2 Space-Time Signal Processing ……………………………15
2.2.1 Antenna Array-Based Receiver ……………………………15
2.2.2 Pulse Shaping Function ……………………………………17
2.3 Discrete Space-Time Signal Channel Model ……………20
2.3.1 Space-Time Signal Channel Model …………………………20
2.3.2 Space-Time Signal-plus-Interference Channel Model …24
2.4 GSM system ……………………………………………………27
2.5 Simulation Scenarios ………………………………………28
2.6 Conclusions ……………………………………………………30
3 LOW COMPLEXITY ANTENNA ARRAY-ASSISTED MULTIUSER DTECTION 31
3.1 Full Complexity MMSE Multiuser Detection ……………31
3.2 Low Complexity MMSE Multiuser Detection with Partial CCIs Information …………………………………………………………35
3.3 Performance Analysis of the MMSE Multiuser Detection……………………………………………………………………39
3.3.1 Performance Analysis of the Full Complexity MMSE Multiuser Detection ………………………………………………………39
3.3.2 Performance Analysis of the Low Complexity MMSE Multiuser Detection with Partial CCIs ………………………………41
3.3.3 Computational Complexity …………………………………44
3.4 Experiments and Discussions ………………………………44
3.5 Conclusions ……………………………………………………48
4 INFORMATION THEORETIC CRITERIA-BASED MULTIUSER
DETECTION 49
4.1 Information Theoretic Criteria …………………………51
4.2 Information Theoretic Criteria Algorithm ……………53
4.2.1 Information Theoretic Criteria Algorithm ……………54
4.2.2 Consistency Analysis ………………………………………59
4.2.3 Comparisons and Discussions ………………………………61
4.3 Simulations Results …………………………………………66
4.4 Conclusions ……………………………………………………71
5 LOW COMPLEXITY MULTIUSER DETECTION WITH DYNAMIC CHANNEL ASSIGNMENT 74
5.1 Cellular Network Model ……………………………………74
5.2 Introduction of Channel Assignment ……………………74
5.3 Dynamic Channel Assignment ………………………………77
5.4 Performance Analysis of the Dynamic Channel Assignment …………………………………………………………………81
5.5 Combination of the MMSE MUD and DCA ……………………83
5.6 Simulations and Discussions ………………………………85
5.7 Conclusions ……………………………………………………98
6 CONCLUSIONS 100
REFERENCE 104
Appendix Channel Stacking Strategy 110

1. A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Addison-Wesley, 1998.
2. S. Wales, ``Technique for cochannel interference suppression in TDMA mobile radio systems,'' IEE Proceedings-Communications, vol. 142, pp. 106-114, April 1995.
3. J. W. Liang and A. J. Paulraj, ``Two stage CCI/ISI reduction with space-time processing in TDMA cellular networks,'' in Proc. IEEE Asilomar Conference on
Signals, Systems and Computers, pp. 607-611, 1996.
4. J.-T. Chen, J. Liang, H.-S. Tsai, and Y.-K. Chen, ``Joint MLSE receiver with dynamic channel description,'' IEEE J. Selected Areas in Communications, vol. 16, pp. 1604-1615, Dec. 1998.
5. S. Moshabi, ``Multi-user detection techniques for CDMA communications,'' IEEE Communications Magazine, pp. 124-136, Oct. 1996.
6. J.G. Proakis, Digital Communications. 4th ed., McGraw-Hill, 2000.
7. M. Honig and M. Tsatsanis, ``Adaptive techniques for multiuser CDMA receivers,'' IEEE Signal Processing Magazine, vol. 17, pp. 49-61, May 2000.
8. S. Verdu, Multiuser Detection. Cambridge University Press, 1998.
9/ Z. Xie, R.T. Short, and C.K. Rushforth, ``A family of suboptimum detectors for coherent multiuser communications,'' IEEE J. Selected Areas in Communications, vol. 8, pp. 683-690, May 1990.
10. J. H. Winters, J. Salz, and R. Gitlin, ``The impact of antenna diversity on the capacity of wireless communication systems,'' IEEE Trans. Communications, vol. 42, pp. 1740-1751, Feb./Mar./Apr. 1994.
11. L. C. Godara, ``Application of antenna arrays to mobile communications, Prat II: Beamforming and direction-of arraival
consideration,'' Proceedings of the IEEE, vol. 85, pp. 195-1245, Aug. 1997.
12. T. S. Rappaport, Wireless Communications-Principles and Practice. Prentice
Hall PTR, 1996.
13. J. B. Schodorf and D. B. Williams, ``Array processing techniques for multiuser detection,'' IEEE Trans Communications, vol. 45, pp. 1375-1378, Nov. 1997.
14. C.-C. Yueh, W.-H. Fang, and M.-L. Wu, ``A low complexity antenna array based multiuser detection,'' in Proc. ISCOM'01, Tainan, Taiwan, R.O.C., Nov. 2001.
15. D. J. Chapman, ``Partial adaptivity for large array,'' IEEE Trans. Antennas and Propagation, vol. 24, pp. 685-696, Sept. 1976.
16. D. R. Morgan, ``Partially adaptive array techniques,'' IEEE Trans. Antennas and Propagation, vol. AP-26, pp. 823-833, Nov. 1978.
17. L.L. Scharf, Statical Signal Processing: Detection,Estimation, and Time Series Analysis. Addison-Wesley, 1990.
18. A. M. Haimovich, ``The eigencanceler adaptive radar by eigenanalysis methods,'' IEEE Trans. Aerospace and Electronic Systems, vol. 32, pp. 532-542, April 1996.
19. A. M. Haimovich, A. Shah, and X. Wu, ``Reduced-rank array processing for wireless communications with application to IS-54/IS-136,'' IEEE Trans. Communications, vol. 48, pp. 743-747, May 2000.
20. N. Erdol and F. Basbug, ``Wavelet transform based adaptive filters: Analysis and new results,'' IEEE Trans. Signal Processing, vol. 44, pp. 2163-2171, Sept. 1996.
21. H. Akaike, ``A new look at the statistical model identification,'' IEEE Trans. Automatic Control, vol. AC-19, pp. 716-723, Dec. 1974.
22. J. Rissanen, ``A universal prior for the integers and estimation by minimum description length,'' Annuals Statistics, vol. 11, pp. 416-431, 1983.
23. M. Wax, and T. Kailath, ``Detection of signals by information theoretic criteria,'' IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-33, pp. 387-392, April 1985.
24. M. Wax, Detection and Estimation of Superimposed Signals. Ph.D. dissertation, Stanford Univ., 1985.
25. M. Wax, ``Detection and localization of multiple sources via the stochastic signals model,'' IEEE Trans. Signal Processing, vol. 39, pp. 2450-2456, Nov. 1991.
26. M. Wax, ``Detection of the number of signals by the MDL Principle,'' IEEE Trans. Acoustics, Speech, and SignalProcessing, vol. 37, pp. 1190-1196, Aug. 1989.
27. S.-J. Yu and J.-H. Lee, ``Design of partially adaptive array beamformers based on information theoretic criteria,'' IEEE Trans. Antennas and Propagation, vol. 42, pp. 676-689, May 1994.
28. S.-J. Yu and J.-H. Lee, ``Design of two-dimensional rectangular array beamformers with partial adaptivity,'' IEEE Trans. Antennas and Propagation, vol. 45, pp. 157-167, Jan. 1997.
29 A. P. Liavas, P. A. Regalia, and J.-P. Delmas, ``Blind channel approximation: Effective channel order determination,'' IEEE Trans. Signal Processing, vol. 47, pp. 3336-3344, Dec. 1999.
30. A. P. Liavas and P. A. Regalia, ``On the behavior of information theoretic criteria for model order selection,'' IEEE Trans. Signal Processing, vol. 49, pp. 1689-1695, Aug. 2001.
31. I. Katzela and M. Naghshineh, ``Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey,'' IEEE Personal Communications, pp. 10-31, June, 1996.
32. G. V. Tsoulos, M. A. Beach and S. C. Swales, ``On the sensitivity of the capacity enhancement of a TDMA system with adaptive multibeam antennas,'' in Proc. IEEE Vehicular Technology Conference, pp. 165-169, 1997.
33. S. R. Saunders, Antennas and Propagation for Wireless Communication Systems. John Wiley and Sons, Inc., 1999.
34. William C. Jakes, Microwave Mobile Communications. John Wiley, New York, 1974.
35. G. Raleigh, S. N. Diggavi, A. F. Naguib, and A. Paulraj, ``Characterization of fast fading vector channels for multi-antenna communication systems,'' in Proc. Asilomar
Conference on Signals, Systems and Computers, pp. 853-857, 1994.
36. A. Paulraj, and C. B. Papadias, ``Space-time processing for wireless communications,'' IEEE Signal Processing Magazine, vol. 14, pp. 49-83, Nov. 1997.
37. W. C. Y. Lee, Mobile Cellular Telecommunications. 2nd ed., McGraw-Hill, New York, 1995.
38. S. Buljore and J.F. Diouris, ``Theoretical study of a multi-sensor equalizer using the MSE for the radio mobile channel (GSM channel),'' in Proc. Asilomar Conference on Signals, Systems and Computers, pp. 94-98, 1994.
39. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays. John Wiley and Sons, Inc., 1980.
40. S. Anderson, et al., ``Adaptive antennas for GSM and TDMA systems,'' IEEE Personal Communications, vol. 6, pp. 74-86, June 1999.
41. J. D. Kraus, Antennas. McGraw-Hill, New York, 1988.
42. G. H. Golub and C. F. Van Loan, Matrix Computations. 3rd ed., John Hopkins, 1996.
43. A. Papoulis, Probability, Random Variables, and Stochastic Processes. MacGram-Hill, New York, 1991.
44. S. J. Orfanidis, Introduction to Signal Processing. Prentice-Hall, 1996.
45. J.-T. Chen, A. Paulraj, and U. Reddy, ``Multichannel maximum-likelihood sequence estimation (MLSE) equalizer for GSM using a parametric channel model,'' IEEE Trans. Communications, vol. 47, pp. 53-63, Jan. 1999.
46. M. C. Vanderveen, A. J. van der Veen, and A. Paulraj, ``Estimation of multipath parameters in wireless communications,'' IEEE Trans. Signal Processing, vol. 46, pp. 682-690, March 1998.
47. A. L. Swindlehurst, ``Time delay and spatial signature estimation using known asynchronous signals," IEEE Trans. SignalProcessing, vol. 46, pp. 449-461, Feb. 1998.
48. A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, ``Joint angle and delay estimation (JADE) using shift-invariance properties,'' IEEE Trans. Signal Processing, vol. 46, pp. 405-418, Feb. 1998.
49. Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, ``TST-MUSIC for joint DOA-delay estimation,'' IEEE Trans. Signal Processing, vol. 49, pp. 721-729, April 2001.
50. J.-T. Chen and J. Liang, ``Multi-channel MLSE equalizer with parametric FIR channel identification,'' IEEE Trans Vehicular Technology, vol. 2, pp. 710-714, Nov. 1997.
51. A. Graham, Kronecker Products and Matrix Calculus with Applications. Ellis Horwood Ltd., Chichester, England, 1981.
52. R. Steele and L. Hanzo, Mobile Radio Communications: Second and Third Generation Cellular and WATM systems. John Wiley, New York, 1999.
53. J. K. Tuganit, L. Tong, and Z. Ding, ``Signal-user channel estimation and equalization,'' IEEE Signal Processing Magazine, vol. 17, pp. 16-28, May 2000.
54. S. Haykin, Adaptive Filter Theory. 4th ed., Prentice-Hall, 2002.
55. A. J. van der Veen, S. Talwar, and A. Paulraj, ``Blind estimation of multiple digital signals transmitted over FIR channels,'' IEEE Signal Processing Letters, vol. 2, pp. 99-102, May 1995.
56. M.-L. Wu, J.-T. Chen, and W.-H. Fang, ``Multi-channel multi-user detection in cellular systems using partial information of CCIs,'' in Proc. Wireless Personal Multimedia Commun., Amsterdam, Netherlands, Sept., 1999.
57. J. Winters, ``On the capacity of radio communication systems with diversity in a Rayleigh fading environment,'' IEEE J. Selected Areas in Communications, vol. SAC-5, pp. 871-878, June 1987.
58. X. Wang and H.V. Poor, ``Blind multiuser detection: A subspace approach,'' IEEE Trans. Information Theory vol. 44, pp. 677-690, March 1998.
59. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University Press, 1991.
60. J. H. Wilkinson, The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England, 1965.
61. J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, and G. D. Forney, ``MMSE decision-feedback equalizers and coding - part I: Equalization results,'' IEEE Trans. Communications, vol. 43, pp. 2582-2594, Oct. 1995.
62. G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory. Academic Press, 1990.
63. M.-L. Wu, W.-H. Fang, and J.-T. Chen, ``Design of low complexity multiuser detection using information theoretic criteria,'' in Proc. IEEE GlobeCom'01, pp. 254-258, Nov. 2001.
64. S. J. Leon, Linear Algebra with Applications. 6th ed., Maxwell Macmillan, 2002.
65. H. L. Van Trees Detection, Estimation, and Modulation Theory. Wiley, New
York, 1968.
66. S. H. Kwon and M. Sugeno, ``Criterion for selecting model order in identification,'' Electronics Letters, vol. 35, pp. 292-293, Feb. 1999.
67. D. B. Williams, ``Counting the degree of freedom when using the AIC and MDL to detec signals,'' IEEE Trans. SignalProcessing, vol. 42, pp. 3282-3284, Nov. 1994.
68. C.-L. Lee, Dyanmic Channel Allocation for Low-Reuse-Factor Multi-Channel TDMA System. Master thesis, National Taiwan University of Science and Technology, 2000.
69. D. Tse, and S. Hanly, ``Linear multiuser receivers: Effective interference, effective bandwidth and user capacity,'' IEEE Trans. Information Theory, vol. 45, pp. 641-657, March 1999.
70. S. A. Gradhi, R. D. Yates, and D. J. Goodman, ``Resource allocation for cellular radio systems,'' IEEE Trans. Vehicular Technology, vol. 46, pp. 581-587, Aug. 1997.
71. M. Zhang and T.-S. Yum, ``Comparisons of channel-assignment strategies in cellular mobile telephone systems,'' IEEE Trans. Vehicular Technology, vol. 38, pp. 211-215, Nov. 1989.
72. M. Zhang and T.-S. Yum, ``The non-uniform compact pattern allocation algorithm for cellular mobile systems,'' IEEE Trans. Vehicular Technology, vol. 40, pp. 387-391, May 1991.
73. C.-L. I and M. A. Haleem, ``Deterministic co-existence dynamic channel assignment algorithm,'' in Proc. IEEE GlobeCom'97, pp. 1650-1656, 1997.
74. L. J. Cimini Jr., G. J. Foschini, C.-L. I, and Z. Miljanic, ``Call blocking performance of distributed algorithms for dynamic channel allocation in microcells,'' IEEE Trans. Communications, vol. 42, pp. 2600-2607, Aug. 1994.
75. G. J. Foschini and Z. Miljanic, ``Distributed autonomous wireless channel assignment algorithm with power control,'' IEEE Trans. Vehicular Technology, vol.
44, pp. 420-429, Aug. 1995.
76. W. Yue, ``Analytical methods to calculate the performance of a cellular mobile radio communication system with hybrid channel assignment,'' IEEE Trans. Vehicular Technology, vol. 40, pp. 453-460, May 1991.
77. T. S. Rappaport, J. H. Reed, and B. D. Woerner, ``Position location using wireless communications on highways of the future,'' IEEE Communications Magazine, vol. 34, pp. 33-41, Oct. 1996.
78. M.-L. Wu, J.-T. Chen, and W.-H. Fang, ``Antenna array assisted dynamic channel assignment with MMSE multi-user detection,'' submitted to IEEE Trans. Vehicular Technology.
79. M.-L. Wu, W.-H. Fang, and J.-T. Chen, ``Multi-user detection with dynamic channel assignment,'' in Proc. IEEE Vehicular Technology Conference, pp. 916-920, 2001.
80. J.-T. Chen, C. B. Papadias, and G. J. Foschini, ``Dynamic signature assignment for reverse-link CDMA systems,'' in Proc. IEEE International Conference on Communications., pp. 912 -916, 1999.
81, W.-H. Fang, J.-T. Chen, M.-L. Wu, and C.-H. Tsai, ``Hybrid Multi-User Detection With Dynamic Mapping Functions,'' accepted by Journal of The Chinese Institute of
Electrical Engineers.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top