|
1.Bailey, R.A., Clark, H.M., Krause, S., Strong, R.L., 1978. “Atmospheric chemistry” Chemistry of the Environment. Academic Press. New York. 2.Sitting, M., 1974. “Aldehydes” Pollution Detection and Monitoring Handbook. Noyes Data Corp. Park Ridge. New Jersey. 3.SittigM(ed). 1985. Handbook of Toxic and Hazardous Chemicals Carcinogens, 2nd ed. Noyes Publications, Park Ridge, NJ, USA 4.Muccini, M., Layton, A.C., Sayler,G. S., Schultz,T.W., 1999. Aquatic toxicities of halogenated benzoic acids to Tetrahymena pyriformis. Bull. Environ. Cotam. Toxicol. 62, 616-622. 5.Ramos-Nino, M.E., Clifford, M.N., Adams, M.R., 1996. Quantitative structure activity relationship for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes. J Applied Bacteriol 80:303-310. 6.Zhao Y.H., Yuan X., Yang L.H., Wang L.S., 1996. Quantitative structure-activity relationships of organic acids and bases. Bull. Environ. Contam. Toxicol. 57:242-249. 7.Wang X., Yu J.,Wang Y.,Wang L.,2002. Mechanism-based quantitative structure–activity relationships for the inhibition of substituted phenols on germination rate of Cucumis sativus. Chemosphere. 46, 241-250. 8.OECD SIDS Assessment Report for benzoate. 9.Budavari S (ed). 1989. The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals.11th ed., Merck and Co Publication,Inc, Rahway, NJ, USA 10.Friedman, M., Henika, P.R., Mandrell, R.E., 2003. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Protect. 66, 1811–1821. 11.Caux ,P.Y., Kent, R.A., Tache, M., 1993. Environmental fate and effects of dicamba: a Canadian perspective. Rev Environ Contam Toxicol 133:1–58 12.Wildermuth, M.C.,2006. Variations on a theme: synthesis and modification of plant benzoic acids. Current Opinion in Plant Biology 9, 288–296 13.Maybury, S.A., Cox, J.S., Crosby, D.G. ,1996 Environmental fate of rice pesticides in California. Rev Environ Toxicol 147, 71-117 14.Abramowicz, D.A.,1990 Aerobic and anaerobic biodegradation of PCBs: A review. Crit Rev Biotechnol 10, 241-251 15.Harkness, M.R., McDermott, J.B., Abramowicz, D.A., Salvo, J.J., Flanagan, W.P., Stephens, M.L., Mondello, F.J., May, R.J., Lobos, J.H., Carroll,K.M., Brennan, M.J., Bracco, A.A., Fish, K.M., Warner, G.L., Wilson, P.R., Dietrich, D.K., Lin, D.T., Morgan, C.B., Gately, W.L.,1993 In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259:503-507. 16.Chen, C.L., Chang, H.M., 1985. Chemistry of lignin biodegradation. In: Higuchi, T. (Ed.), Biosynthesis and Biodegradation of Wood Components. Academic Press, Florida, pp. 535–556. 17.Guardiola J, Ventura J, Rivera J, et al. 1989. Occurrence of industrial organic pollution in ground water supply: screening, monitoring and evaluation of treatment process. Water Supply 7:11–6. 18.Stuermer, D.H., Ng, D.J., Morris, C.J., 1982. Organic contaminants in ground water near underground coal gasification site I northeaster Wyoming. Environ Sci Technol 16,582–7 19.Ham, R.K., Boyle, N.C., Engroff, E.C.,1989. Determining the presence of organic compounds in foundry waste leachates. Modern Casting 79,27–31 20.Stachel, B., Ehrhorn, U., Heemken, O-P, Lepom, P., Reincke, H., Sawal, G., Theobald, N., 2003. Xenoestrogens in the River Elbe and its tributaries. Environ Pollut 124,497–507 21.Zhao, Y.H., Ji, G.D., Cronin, M.T.D., Dearden, J.C.,1998. QSAR study of the toxicity of benzoic acids to Vibrio fischeri, Daphnia magna and carp. Sci. Total Environ. 216, 205–215. 22.Warth, A.D., 1988.Effect of Benzoic Acid on Growth Yield of Yeasts Differing in Their Resistance to Preservatives. Appl. Environ. Microbiol. 54, 2091-2095 23.Ribo, J.M., Kaiser, K.L.E., 1983. Effects of selected chemicals to photoluminescent bacteria and their correlations with acute and sublethal effects on other organisms. Chemosphere 12, 1421–1442. 24.Schultz, T.W., Bryant, S.E., Kissel, T.S., 1996. Toxicological assessment in Tetrahymena of intermediates in aerobic microbial transformation of toluene and p-xylene. Bull. Environ. Contam. Toxicol. 56, 129–134. 25.Kamaya, Y., Fukaya Y., Suzuki, K., 2005. Acute toxicity of benzoic acids to the crustacean daphnia magna. Chemosphere 59, 255-261 26.Smith, M.R., 1990. Biodegradation of aromatic hydrocarbon by bacteria. Biodegradation 1, 191–206. 27.Habe, H., Omori, T., 2003. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem. 67, 225–243. 28.Mayer, P., Nyholm, N., Verbruggen, E.M.J., Hermens, J.L.M., Tolls, J., 2000. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials. Environ. Toxicol. Chem. 19, 2551–2556. 29.Padrtova, R.R., Marsalek, B., Holoubek, I., 1998. Evaluation of alternative and standard toxicity assays for screening of environmental samples: selection of an optimal test battery. Chemosphere. 37, 495-507. 30.Lin, J.H., Kao, W.C., Tsai, K.P., Chen, C.Y., 2005. Anovel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants. Water Res. 39, 1869-1877. 31.Chen, C.Y., Chao, M.R., 2000. No-observed-effect concentrations in batch and continuous algal toxicity tests. Environ. Toxicol. Chem. 19, 1589-1596. 32.Nyholm, N., Damgaard, B.M., 1990. A comparison of the algal growth inhibiton toxicity test method with the short term 14C-assimilation test. Chemosphere. 21, 671-679. 33.Hostetter, H.P., 1976. A rapid bioassay for algal nutrients and toxins. J. Phycol. 12, 10. 34.Mingazzini, M., Saenz, M.E., Albergoni, F.G., Marre, M.T., 1997. Algal photosynthesis measurements in toxicity testing. Fresenius Envir Bull. 6, 308-313. 35.Sudareva N.N., Chubarova E.V. 2006. Time-dependent conversion of benzyl alcohol to benzaldehyde and benzoic acid in aqueous solutions. Journal of Pharmaceutical and Biomedical Analysis. 41,1380–1385 36.Brack, W., Rottlern, H., 1994. Toxicity testing of highly volatile chemicals with green algae. ESPR. 4, 223-228. 37.Kuhn, R., Pattard, M., Pernak, K., Winter, A., 1989. Results of the Harmful Effects of Selected Water Pollutants(Anilines, Phenols, Aliphatic Compounds) to Daphnia magna. Water. Res. 23, 495-499. 38.Galassi, S., Vighi, M., 1981. Testing toxicity of volatile substances with algae. Chemosphere. 10, 1123-1126. 39.Herman, D.C., Inniss, W.E., Mayfield, C.I., 1990. Impact of volatile aromatic hydrocarbons, alone ane in combination, on growth of the freshwater alga Selenastrum Capricornutum. Aquatic. Toxicology. 18, 87-100. 40.Huang, H.J., 2000. Experimental design of the algal toxicity test based on photosynthesic response. A Thesis Submitted to Institute of Environmental Engineering of National Chiao Tung University. 41.Lin, J.H., 2001. Experimental design of the algal toxicity test based on BOD bottle. A Thesis Submitted to Institute of Environmental Engineering of National Chiao Tung University. 42.Chen, C.Y., Lin, J. H., 2006 Toxicity of chlorophenols to Pseudokirchneriella subcapitata under air-tight test environment. Chemosphere. 62, 503-509. 43.Huang, C.P., Wang, Y.J., Chen, C.Y., 2007. Toxicity and quantitative structure–activity relationships of nitriles based on Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf. 67,439-446. 44.Chen, C.Y., Yan Y.K., Yang, C.F., 2006. Toxicity assessment of polycyclic aromatic hydrocarbons using an air-tight algal toxicity test. Water Science and Technology. 54,309-315. 45.Hsieh, S.H., Hsu, C.H., Tsai, D.Y., Chen, C.Y., 2006. Quantitative structure–activity relationships for toxicity of non-polar narcotic chemicals to Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 25, 2920-2926. 46.Hsieh, S.H., Tsai, K.P., Chen, C.Y., 2006 The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Water Res. 40, 1957-1964. 47.Tsai, K.P., Chen, C.Y., 2007. An algal toxicity database of organic toxicants derived by a closed-system technique. Environ. Toxicol. Chem. (In press). 48.Halling-Sψrensen, B., Nyholm, N., Baun, A., 1996. Algae toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace. Chemosphere. 32, 1513 – 1526. 49.Arensberg, P., Hemmingsen, V.H., Nyholm, N., 1995. A miniscale algal toxicity test. Chemosphere. 30, 2103-2115. 50.Nyholm, N., Kälqvist, T., 1989. Methods for growth inhibition toxicity tests with freshwater algae. Environ. Toxicol. Chem. 8, 689-703. 51.United States Environmental Protection Agency(U.S. EPA). 1996. Ecological Effect Test Guidelines. OPPTS 850.5400. Algal Toxicity, Tiers I and II. 52.Chen, C.Y., 1994. Theoretical evaluation of the inhibitory effects of mercury on algal growth at various orthophosphate levels. Water Research. 28, 931-937. 53.Millington, L.A., Goulding, K.H., Adams, N., 1988. The influence of growth medium composition on the toxicity of chemicals to algae. Water Research. 22, 1593-1597 54.Newman, M.C., McIntosh, A.W., 1991. Metal Ecotoxicology. pp.1-26. Lewis, Michigan. 55.Mazidji, C.N., Koopman, B., Bitton, G., Neita, D., 1992..Distinction between heavy metal and organic toxicity using EDTA chelation and microbial assays. Environ. Toxicol. Water. Qual. 7, 339-353. 56.Sorvari, J., Sillanpaa, M., 1996. Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna. Chemosphere. 33, 1119-1127. 57.Christensen, E.R., Chen, D., Nyholm, N., Kusk, O., 2001. Joint action of chemicals in algal toxicity tests: influence of response level and dose – response regression model. Environ. Toxicol. Chem. 20, 2361-2369. 58.Jawecki, G.N., Sawicki, J., 1999. Spirotox-A new tool for testing the toxicity of volatile compounds. Arch. Environ. Contam. Toxicol. 42, 389–395. 59.Ramos, E.U., Vaal, M.A., Hermens, J.L.M., 2002. Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ. Toxicol. Pharm. 11, 149-158. 60.Ensley, H.E., Sharma, H.A., Barber, J.T., Polito, M.A., 1997. Metabolism of chlorinated phenols by Lemna gibba, duckewwd. In phytoremediation of Soil and water contaminants. American Chemical Society. Washington. DC.238-253. 61.Yen, J.H., Lin, K.H., Wang, Y.S., 2002. Acute Lethal Toxicity of Environmental Pollutants to Aquatic Organisms. Ecotox. Safe. 52, 113-116. 62.Dearden, J.C., Cronin, M.T.D., Schultz, T.M., 1995. QSAR study of the toxicity of nitrobenzenes of Tetrahymena pyrifirmis. Quant. Struct-Act Relat. 14, 427-432. 63.Mckarns, J.W., Hansch, C., Caldwell, W.S., Morgan, W.T., Moore, S.K., Doolittle, D.J., 1997. Correlation between hydrophobicity of Short-chain aliphatic alcohols and their ability to alter plasma membrane integrity. Fund. Appl. Toxicol. 36, 171-186. 64.Speece, R.E., 1988. Structure-activity relationship : Quantitative techniques for predicting the behavior of chemicals in the ecosystem. Environ. Sci. Technol. 22, 606-615. 65.Hansch, C., Maloney, P.P., Fujita, T., Muir, R.M., 1962. The correlation of the biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature. 194, 178-180. 66.McFarland, J.W., 1970. On the parabolic relationship between drug potency and hydrophobicity. J. Med. Chem. 13, 1092-1196. 67.Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D.E., Drummond, R A., 1997. Predicting modes of toxic action from chemical structure : acute toxicity in the fathead minnow (Pimephales promelas).Environ. Toxicol. Chem. 16 (5), 948-967. 68.Nirmalakhandan, N., Egemen, E., Trevizo, C., Xu, S., 1998. Structure and property-activity relationship models for prediction of microbal toxicity of organic chemicals to activated sludge. Ecotox. Environ. Safe. 39, 112-119. 69.Atkins, P.W., 1994. Physical chemistry. Oxiford University Press. 497. 70.Di, M.W., Saenz, M.E., 2004. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Ecotox. Environ. Safe. 59, 256-262. 71.Randic, M., 1975. On the characterization of molecular branching. J. Am. Chem. Soc. 97, 6609-6615. 72.Kubinyi, H., 1993. QSAR: Hansch Analysis and Related Approaches. VCH Publishers. New York. NY(USA). pp.4-49. 73.Broderius, S.J., Michael, D.K., Marilynn, D.H., 1995. Use of joint response to define the primary modes of toxic action for diverse industrial organic chemicals. Environ. Toxicol. Chem. 14, 1591-1605. 74.Mckim, J.M., Bradbury, S.P., Niemi, G.J., 1987. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ. Health prespect. 71, 171-186. 75.Lipick, R.L., 1991. Outliers: their origin and use in the classification of molecular mechanisms of toxicity. Sci. Total. Environ. 109, 110, 131-153. 76.Zhao, Y.T., Cronin, M.T., Dearden, J.C., 1998. Quantitative structure- activity relationships of chemicals acting by non-polar narcosis-theoretical considerations. Quant. Struct. Act. Relat. 17, 131-138 77.Escher, B.I., Schwarzenbach, R.P., 2002. Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentration in aquatic organisms. Aquatic Science. 64, 20-35. 78.Di Marizo, W., and Saenz, M.E., 2004. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Ecotox. Environ. Safe. 59, 256-262. 79.Schultz, T.W., Sinks, G.D., Bearden, A.P., 1998. QSAR in aquatic toxicology:A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri. In:Devillers J, editor. Comparative QSAR. New York:Taylor & Francis. 51-109. 80.Dearden, J.C., Cronin, M.T.D., Zhao, Y.H., 2000. QSAR studies of Compounds Acting by Polar and Nonpolar Narcosis: an Examination of the role of Polarisability and H ydrogen Bon Marizo ng. Quant. Struct. Act. Relat. 19, 3-9. 81.Verhaar, H.J.M., Van Leeuwen,, C.J., Hermens, J.L.M., 1992. Classfying environmental pollutants: 1-structure-activity relationships for prediction of aquatic toxicity. Chemisphere. 25, 471-491. 82.Veith, G.D., Broderius, S.J., 1990. Rules for distinguishing toxicants that cause typeI and type II narcosis syndrome. Environ. Health Persp. 87, 207-211. 83.Mekenyan, O.G., Veith, G.D., 1994. The electronic factor in QSAR: MO-parameters, competing interactions, reactivity, and toxicity. SAR QSAR Environ. Res. 2, 129-143. 84.Lipnick, R.L., Watson, K.R., Strausz, K.A., 1987. A QSAR study of the acute toxicity of some industrial organic chemicals to goldfish, Narcosis, electrophile and proelectrophilie mechanisms. Xenobiotica. 17, 1011-1025. 85.Seward, J.R., Hamblen, E.L., Schultz, T.W., 2002. Regression comparisons of Tetrahymena pyriformis and Poecilia reticulata toxicity. Chemosphere. 47, 93-101. 86.Hansch, C., Leo, A., 1979. Substituent constants for correlation analysis in chemistry and biology. John Wiley and Sons, New York, p 1-4. 87.Kamaya, Y., Tsuboi, S., Takada, T., Suzuki, K., 2006. Growth Stimulation and Inhibition Effects of 4-Hydroxybenzoic Acid and Some Related Compounds on the Freshwater Green Alga Pseudokirchneriella subcapitata. Arch. Environ. Contam. Toxicol. 51, 537–541. 88.Verhaar, H.J.M., Solb, J., Speksnijder, J., van Leeuwen, C. J., Hermens, J.L.M., 2000. Classifying environmental pollutants: Part 3. External validation of the classification system. Chemosphere 40,875〜883. 89.Schultz, T.W., Cronin, M.T.D., Netzeva, T. I., 2003. The present status of QSAR in toxicology. Journal of molecular structure 622,23-38. 90.FIORENTINO, A., GENTILI, A., ISIDORI, M., MONACO, P., NARDELLI,A., PARRELLA, A.,TEMUSSI, F., 2003. Environmental Effects Caused by Olive Mill Wastewaters: Toxicity Comparison of Low-Molecular-Weight Phenol Components. J. Agric. Food Chem. 51, 1005-1009. 91.Christensen, E.R., Chen, C.Y., 1985. A general noninteractive multiple toxicity model including Probit, Logit, and Weibull transformations. Biometrics. 41, 711-725. 92.Prakash, J., Nirmalakhandan, N., Sun, B., Peace, J., 1996. Toxicity of binary mixtures of organic chemicals to microorganisms. Wat. Res. 30, 1459-1463. 93.Yeh, H.J., Chen, C.Y., 2006 Toxicity assessment of pesticides to Pseudokirchneriella subcapitata under air-tight test environment. J. Hazardous Materials, 131, pp. 6-12. 94.SICILIANO S.D., GERMIDA J. J. 1998. Degradation of chlorinated benzoic acid mixtures by plant-bacteria associations. Environ. Toxic. Chem. 17, 728–733. 95.Gagliardi, L., A. Amato, A. Basili, G. Cavazzutti, E. Gattavecchia, and D. Tonelli. 1984. Determination of preservatives in cosmetic products by reversed-phas e high-performanc e liquid chromatography. J. Chromatogr. 315:465–469. 96.European Union (EU). 1995. The Cosmetics Directive of the European Union. Updated version—incorporating all amendments until August 1, 1995. Dir. 76/768/EEC. 97.Santucci, L. G., ed. 1999. List of Japanese cosmetic ingredients. 4rd ed. Washington, DC: CTFA. 98.Tang Y., Wu M., 2007. The simultaneous separation and determination of five organic acids in food by capillary electrophoresis. Food Chemistry. 103, 243–248. 99.Zhu J.Q., Sheng M.P., Huan Z., Qian X.S., Qiang W., Yan Q., 2006. The effect of temperature on the solubility of benzoic acid derivatives in water. Fluid Phase Equilibria. 250, 165–172. 100.ERICKSON R.J., MCKIM J.M., LIEN G.J., HOFFMAN A.D., BATTERMAN S., 2006. Uptake and elimination of ionizable organic chemicals at fish gills:Ⅱ observed and chemical properties. Environ. Toxic. Chem. 25, 1522–1532. 101.RORIJE E., Peijnenburg W. J.G.M., and Klopman G., 1998 Structural requirements for anaerobic biodegradation of organic chemical: a fragment model analysis. Environ. Toxic. Chem. 17, 1943–1950. 102.Williams1 M., Senaratna T., Dixon K., Sivasithamparam K., 2003. Benzoic acid induces tolerance to biotic stress caused by Phytophthora cinnamomi in Banksia attenuate. Plant Growth Regulation 41, 89–91.
|