跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/08 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李柏毅
研究生(外文):Po-Yi Lee
論文名稱:以密閉式藻類毒性試驗方法評估苯甲酸類之毒性與結構-活性關係之研究
論文名稱(外文):The Study of Toxicity Assessment of Benzoic acids Using a Closed-System Algal Test and The Quantitative Structure-Activity Relationships
指導教授:陳重元
指導教授(外文):Chung-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:139
中文關鍵詞:月芽藻QSAR苯甲酸半致死濃度(EC50)
外文關鍵詞:Pesudokirchneriella subcapitataQSARBenzoic acidMedian effective concentration (EC50)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
此篇研究以月芽藻 (Pseudokirchneriella subcapitata)對20種苯甲酸類進行之48小時密閉式毒性試驗。實驗所得到之結果,將利用△DO、Final yield及Growth rate做為觀測終點,藉由Probit模式求出半致死濃度 (50% Effect concentration,EC50),其後將毒性試驗後所得到的log(1/EC50),與logKOW與NOH(苯環上烴基取代基所接的數目)迴歸,為此篇研究之最佳方程式(R2=0.915~0.965)。結果顯示,鹵素取代基接於苯甲酸之鄰位取代基毒性較間位、對位低;但烴類取代基接於苯甲酸之鄰位毒性卻較間位、對位高,而三烴基苯甲酸雖為低pKa及logKOW之化學結構,但與藻類有很好之親合性而導致較高的毒性。針對低影響濃度進行敏感性之比較,(△DO、Final yield及Growth rate),其敏感度為 NOEC > EC10。而在本研究之三種反應終點當中對於苯甲酸類之敏感性最高者為細胞密度變化量,其次為溶氧產生量,而敏感性最差之反應終點為生長率。與其他生物種進行比較可以發現本研究之海洋性發光菌敏感性最高、其他依序為月芽藻、水蚤,敏感性最差者為纖毛蟲。
The objective of this study is to study the toxic effect of benzoic acids on Pseudokirchneriella subcapitata using a closed system test. The effects of benzoic acids were evaluated by three kinds of response endpoints, i.e., cell density, algal growth rate, and the dissolved oxygen production. Median effective concentratons (EC50s) were estimated using the Probit model with a test duration of 48hr.
The quantitative structure-activity relationships (QSARs) were established based on the 1-octanol/water partition coefficient (logKow) and the numbers of benzene substituted with hydroxyl revealed a good relationship (R2=0.915~0.965).
Benzoic acids with halogens at the meta- and para- positions were more toxic than benzoic acids with halogens at the ortho- position. As for the hydroxylated benzoic acids considered here, the results indicate that ortho- hydroxylated benzoic acids have lower pKa values, but the resluts showed higher toxicities than the meta- and/or para- hydroxylated ones, indicating that the hydroxybenzoate derivatives behaved differently from the halobenzoates. Especially, Tri-hydroxybenzoates may have higher affinity to algae than expected from their low logKow and pKa values.
The results also reveal that the value of the lower effect concentration of the benzoic acids (cell density, algal growth rate, and the dissolved oxygen production). This demonstrates that the relative sensitivity is NOEC >EC10>. Besides, the experiment results (EC50) are compared with literature data derived by various toxicity tests. The order of the relative sensitivity is then obtained as follows : Microtox> algae(Final yield)> algae(DO production)> algae(Grwoth rate)> Daphnia magna> Tetrahymena pyriformis.
第一章、緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究方法及架構 3
第二章、文獻回顧 6
2.1 毒性物質─苯甲酸類 6
2.1.1 苯甲酸類之物理特性 6
2.1.2 苯甲酸類之應用 7
2.1.3 苯甲酸類之流佈 7
2.1.4 苯甲酸類之毒理特性 8
2.1.5化學結構降解成苯甲酸類之路徑 12
2.2 藻類毒性試驗 14
2.2.1 試驗物種簡介 14
2.2.2 藻類計數方法 15
2.2.3 藻類毒性試驗 16
2.2.4 批次藻類毒性試驗 17
2.2.5 密閉式試驗方法 17
2.2.6 密閉式BOD瓶藻類毒性試驗 20
2.2.7 試驗之重要參數 21
2.2.8 觀測終點(End point)之量測 26
2.2.9 揮發性有機物實驗 26
2.3 有機物結構與毒性之關係 27
2.4 定量結構-反應關係(QSAR) 28
2.4.1 QSAR之簡介 28
2.4.2 常用之QSAR參數 30
2.4.3 QSAR在環境毒物學上的應用 33
2.5 苯甲酸類之QASR研究 37
第三章、基本理論 38
3.1 毒性試驗終點種類 38
3.2 毒性物質劑量反應模式 40
3.3 最佳化模式G-test 43
3.4 NOEC及LOEC 44
3.5 NEC 46

第四章、實驗設備與方法 50
4.1 實驗設備及材料 50
4.2 毒性試驗藻種 59
4.3 實驗前準備 59
4.3.1 培養基質的配製 59
4.3.2 玻璃器皿清洗與滅菌 61
4.3.3 盤面光度之調整 62
4.3.4 藻類之培養步驟及裝置 62
4.3.5 ISOTON II之配製 63
4.3.6 COD-比色法藥品配製 63
4.3.7 電子顆粒計數器操作方式與原理 64
4.4 儀器操作原理、步驟與設定條件 67
4.4.1 高效能液相層析儀(HPLC) 67
4.4.2 COD-比色法 70
4.5 密閉式藻類毒性試驗方法及步驟 71
4.5.1 實驗方法 71
4.5.2 實驗步驟 71
4.6 實驗之品保及品管(QA/QC) 76
第五章、結果與討論 79
5.1 藻類毒性試驗數據 79
5.1.1 不同pH下藻類生長情況 79
5.1.2 不同pH下苯甲酸實驗結果 80
5.2 苯甲酸類結構與毒性 96
5.2.1 離子態與分子態苯甲酸 96
5.2.2 苯甲酸類取代基種類及位置對毒性之影響 97
5.2.3 苯甲酸類與基線毒性之比較 99
5.3 最佳化模式 102
5.4 NOEC、EC10、NEC值之比較 108
5.5 急慢毒性比(Acute-Chronic Toxicity Ratio ; ACR) 114
5.6 密閉式BOD瓶藻類毒性試驗與其他物種試驗之比較 116
5.7 QSAR分析 120
第六章、結論與建議 125
第七章、參考文獻 128
1.Bailey, R.A., Clark, H.M., Krause, S., Strong, R.L., 1978. “Atmospheric chemistry” Chemistry of the Environment. Academic Press. New York.
2.Sitting, M., 1974. “Aldehydes” Pollution Detection and Monitoring Handbook. Noyes Data Corp. Park Ridge. New Jersey.
3.SittigM(ed). 1985. Handbook of Toxic and Hazardous Chemicals Carcinogens, 2nd ed. Noyes Publications, Park Ridge, NJ, USA
4.Muccini, M., Layton, A.C., Sayler,G. S., Schultz,T.W., 1999. Aquatic toxicities of halogenated benzoic acids to Tetrahymena pyriformis. Bull. Environ. Cotam. Toxicol. 62, 616-622.
5.Ramos-Nino, M.E., Clifford, M.N., Adams, M.R., 1996. Quantitative structure activity relationship for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes. J Applied Bacteriol 80:303-310.
6.Zhao Y.H., Yuan X., Yang L.H., Wang L.S., 1996. Quantitative structure-activity relationships of organic acids and bases. Bull. Environ. Contam. Toxicol. 57:242-249.
7.Wang X., Yu J.,Wang Y.,Wang L.,2002. Mechanism-based quantitative structure–activity relationships for the inhibition of substituted phenols on germination rate of Cucumis sativus. Chemosphere. 46, 241-250.
8.OECD SIDS Assessment Report for benzoate.
9.Budavari S (ed). 1989. The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals.11th ed., Merck and Co Publication,Inc, Rahway, NJ, USA
10.Friedman, M., Henika, P.R., Mandrell, R.E., 2003. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Protect. 66, 1811–1821.
11.Caux ,P.Y., Kent, R.A., Tache, M., 1993. Environmental fate and effects of dicamba: a Canadian perspective. Rev Environ Contam Toxicol 133:1–58
12.Wildermuth, M.C.,2006. Variations on a theme: synthesis and modification of plant benzoic acids. Current Opinion in Plant Biology 9, 288–296
13.Maybury, S.A., Cox, J.S., Crosby, D.G. ,1996 Environmental fate of rice pesticides in California. Rev Environ Toxicol 147, 71-117
14.Abramowicz, D.A.,1990 Aerobic and anaerobic biodegradation of PCBs: A review. Crit Rev Biotechnol 10, 241-251
15.Harkness, M.R., McDermott, J.B., Abramowicz, D.A., Salvo, J.J., Flanagan, W.P., Stephens, M.L., Mondello, F.J., May, R.J., Lobos, J.H., Carroll,K.M., Brennan, M.J., Bracco, A.A., Fish, K.M., Warner, G.L., Wilson, P.R., Dietrich, D.K., Lin, D.T., Morgan, C.B., Gately, W.L.,1993 In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259:503-507.
16.Chen, C.L., Chang, H.M., 1985. Chemistry of lignin biodegradation. In: Higuchi, T. (Ed.), Biosynthesis and Biodegradation of Wood Components. Academic Press, Florida, pp. 535–556.
17.Guardiola J, Ventura J, Rivera J, et al. 1989. Occurrence of industrial organic pollution in ground water supply: screening, monitoring and evaluation of treatment process. Water Supply 7:11–6.
18.Stuermer, D.H., Ng, D.J., Morris, C.J., 1982. Organic contaminants in ground water near underground coal gasification site I northeaster Wyoming. Environ Sci Technol 16,582–7
19.Ham, R.K., Boyle, N.C., Engroff, E.C.,1989. Determining the presence of organic compounds in foundry waste leachates. Modern Casting 79,27–31
20.Stachel, B., Ehrhorn, U., Heemken, O-P, Lepom, P., Reincke, H., Sawal, G., Theobald, N., 2003. Xenoestrogens in the River Elbe and its tributaries. Environ Pollut 124,497–507
21.Zhao, Y.H., Ji, G.D., Cronin, M.T.D., Dearden, J.C.,1998. QSAR study of the toxicity of benzoic acids to Vibrio fischeri, Daphnia magna and carp. Sci. Total Environ. 216, 205–215.
22.Warth, A.D., 1988.Effect of Benzoic Acid on Growth Yield of Yeasts Differing in Their Resistance to Preservatives. Appl. Environ. Microbiol. 54, 2091-2095
23.Ribo, J.M., Kaiser, K.L.E., 1983. Effects of selected chemicals to photoluminescent bacteria and their correlations with acute and sublethal effects on other organisms. Chemosphere 12, 1421–1442.
24.Schultz, T.W., Bryant, S.E., Kissel, T.S., 1996. Toxicological assessment in Tetrahymena of intermediates in aerobic microbial transformation of toluene and p-xylene. Bull. Environ. Contam. Toxicol. 56, 129–134.
25.Kamaya, Y., Fukaya Y., Suzuki, K., 2005. Acute toxicity of benzoic acids to the crustacean daphnia magna. Chemosphere 59, 255-261
26.Smith, M.R., 1990. Biodegradation of aromatic hydrocarbon by bacteria. Biodegradation 1, 191–206.
27.Habe, H., Omori, T., 2003. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem. 67, 225–243.
28.Mayer, P., Nyholm, N., Verbruggen, E.M.J., Hermens, J.L.M., Tolls, J., 2000. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials. Environ. Toxicol. Chem. 19, 2551–2556.
29.Padrtova, R.R., Marsalek, B., Holoubek, I., 1998. Evaluation of alternative and standard toxicity assays for screening of environmental samples: selection of an optimal test battery. Chemosphere. 37, 495-507.
30.Lin, J.H., Kao, W.C., Tsai, K.P., Chen, C.Y., 2005. Anovel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants. Water Res. 39, 1869-1877.
31.Chen, C.Y., Chao, M.R., 2000. No-observed-effect concentrations in batch and continuous algal toxicity tests. Environ. Toxicol. Chem. 19, 1589-1596.
32.Nyholm, N., Damgaard, B.M., 1990. A comparison of the algal growth inhibiton toxicity test method with the short term 14C-assimilation test. Chemosphere. 21, 671-679.
33.Hostetter, H.P., 1976. A rapid bioassay for algal nutrients and toxins. J. Phycol. 12, 10.
34.Mingazzini, M., Saenz, M.E., Albergoni, F.G., Marre, M.T., 1997. Algal photosynthesis measurements in toxicity testing. Fresenius Envir Bull. 6, 308-313.
35.Sudareva N.N., Chubarova E.V. 2006. Time-dependent conversion of benzyl alcohol to benzaldehyde and benzoic acid in aqueous solutions. Journal of Pharmaceutical and Biomedical Analysis. 41,1380–1385
36.Brack, W., Rottlern, H., 1994. Toxicity testing of highly volatile chemicals with green algae. ESPR. 4, 223-228.
37.Kuhn, R., Pattard, M., Pernak, K., Winter, A., 1989. Results of the Harmful Effects of Selected Water Pollutants(Anilines, Phenols, Aliphatic Compounds) to Daphnia magna. Water. Res. 23, 495-499.
38.Galassi, S., Vighi, M., 1981. Testing toxicity of volatile substances with algae. Chemosphere. 10, 1123-1126.
39.Herman, D.C., Inniss, W.E., Mayfield, C.I., 1990. Impact of volatile aromatic hydrocarbons, alone ane in combination, on growth of the freshwater alga Selenastrum Capricornutum. Aquatic. Toxicology. 18, 87-100.
40.Huang, H.J., 2000. Experimental design of the algal toxicity test based on photosynthesic response. A Thesis Submitted to Institute of Environmental Engineering of National Chiao Tung University.
41.Lin, J.H., 2001. Experimental design of the algal toxicity test based on BOD bottle. A Thesis Submitted to Institute of Environmental Engineering of National Chiao Tung University.
42.Chen, C.Y., Lin, J. H., 2006 Toxicity of chlorophenols to Pseudokirchneriella subcapitata under air-tight test environment. Chemosphere. 62, 503-509.
43.Huang, C.P., Wang, Y.J., Chen, C.Y., 2007. Toxicity and quantitative structure–activity relationships of nitriles based on Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf. 67,439-446.
44.Chen, C.Y., Yan Y.K., Yang, C.F., 2006. Toxicity assessment of polycyclic aromatic hydrocarbons using an air-tight algal toxicity test. Water Science and Technology. 54,309-315.
45.Hsieh, S.H., Hsu, C.H., Tsai, D.Y., Chen, C.Y., 2006. Quantitative structure–activity relationships for toxicity of non-polar narcotic chemicals to Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 25, 2920-2926.
46.Hsieh, S.H., Tsai, K.P., Chen, C.Y., 2006 The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Water Res. 40, 1957-1964.
47.Tsai, K.P., Chen, C.Y., 2007. An algal toxicity database of organic toxicants derived by a closed-system technique. Environ. Toxicol. Chem. (In press).
48.Halling-Sψrensen, B., Nyholm, N., Baun, A., 1996. Algae toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace. Chemosphere. 32, 1513 – 1526.
49.Arensberg, P., Hemmingsen, V.H., Nyholm, N., 1995. A miniscale algal toxicity test. Chemosphere. 30, 2103-2115.
50.Nyholm, N., Kälqvist, T., 1989. Methods for growth inhibition toxicity tests with freshwater algae. Environ. Toxicol. Chem. 8, 689-703.
51.United States Environmental Protection Agency(U.S. EPA). 1996. Ecological Effect Test Guidelines. OPPTS 850.5400. Algal Toxicity, Tiers I and II.
52.Chen, C.Y., 1994. Theoretical evaluation of the inhibitory effects of mercury on algal growth at various orthophosphate levels. Water Research. 28, 931-937.
53.Millington, L.A., Goulding, K.H., Adams, N., 1988. The influence of growth medium composition on the toxicity of chemicals to algae. Water Research. 22, 1593-1597
54.Newman, M.C., McIntosh, A.W., 1991. Metal Ecotoxicology. pp.1-26. Lewis, Michigan.
55.Mazidji, C.N., Koopman, B., Bitton, G., Neita, D., 1992..Distinction between heavy metal and organic toxicity using EDTA chelation and microbial assays. Environ. Toxicol. Water. Qual. 7, 339-353.
56.Sorvari, J., Sillanpaa, M., 1996. Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna. Chemosphere. 33, 1119-1127.
57.Christensen, E.R., Chen, D., Nyholm, N., Kusk, O., 2001. Joint action of chemicals in algal toxicity tests: influence of response level and dose – response regression model. Environ. Toxicol. Chem. 20, 2361-2369.
58.Jawecki, G.N., Sawicki, J., 1999. Spirotox-A new tool for testing the toxicity of volatile compounds. Arch. Environ. Contam. Toxicol. 42, 389–395.
59.Ramos, E.U., Vaal, M.A., Hermens, J.L.M., 2002. Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ. Toxicol. Pharm. 11, 149-158.
60.Ensley, H.E., Sharma, H.A., Barber, J.T., Polito, M.A., 1997. Metabolism of chlorinated phenols by Lemna gibba, duckewwd. In phytoremediation of Soil and water contaminants. American Chemical Society. Washington. DC.238-253.
61.Yen, J.H., Lin, K.H., Wang, Y.S., 2002. Acute Lethal Toxicity of Environmental Pollutants to Aquatic Organisms. Ecotox. Safe. 52, 113-116.
62.Dearden, J.C., Cronin, M.T.D., Schultz, T.M., 1995. QSAR study of the toxicity of nitrobenzenes of Tetrahymena pyrifirmis. Quant. Struct-Act Relat. 14, 427-432.
63.Mckarns, J.W., Hansch, C., Caldwell, W.S., Morgan, W.T., Moore, S.K., Doolittle, D.J., 1997. Correlation between hydrophobicity of Short-chain aliphatic alcohols and their ability to alter plasma membrane integrity. Fund. Appl. Toxicol. 36, 171-186.
64.Speece, R.E., 1988. Structure-activity relationship : Quantitative techniques for predicting the behavior of chemicals in the ecosystem. Environ. Sci. Technol. 22, 606-615.
65.Hansch, C., Maloney, P.P., Fujita, T., Muir, R.M., 1962. The correlation of the biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature. 194, 178-180.
66.McFarland, J.W., 1970. On the parabolic relationship between drug potency and hydrophobicity. J. Med. Chem. 13, 1092-1196.
67.Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D.E., Drummond, R A., 1997. Predicting modes of toxic action from chemical structure : acute toxicity in the fathead minnow (Pimephales promelas).Environ. Toxicol. Chem. 16 (5), 948-967.
68.Nirmalakhandan, N., Egemen, E., Trevizo, C., Xu, S., 1998. Structure and property-activity relationship models for prediction of microbal toxicity of organic chemicals to activated sludge. Ecotox. Environ. Safe. 39, 112-119.
69.Atkins, P.W., 1994. Physical chemistry. Oxiford University Press. 497.
70.Di, M.W., Saenz, M.E., 2004. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Ecotox. Environ. Safe. 59, 256-262.
71.Randic, M., 1975. On the characterization of molecular branching. J. Am. Chem. Soc. 97, 6609-6615.
72.Kubinyi, H., 1993. QSAR: Hansch Analysis and Related Approaches. VCH Publishers. New York. NY(USA). pp.4-49.
73.Broderius, S.J., Michael, D.K., Marilynn, D.H., 1995. Use of joint response to define the primary modes of toxic action for diverse industrial organic chemicals. Environ. Toxicol. Chem. 14, 1591-1605.
74.Mckim, J.M., Bradbury, S.P., Niemi, G.J., 1987. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ. Health prespect. 71, 171-186.
75.Lipick, R.L., 1991. Outliers: their origin and use in the classification of molecular mechanisms of toxicity. Sci. Total. Environ. 109, 110, 131-153.
76.Zhao, Y.T., Cronin, M.T., Dearden, J.C., 1998. Quantitative structure- activity relationships of chemicals acting by non-polar narcosis-theoretical considerations. Quant. Struct. Act. Relat. 17, 131-138
77.Escher, B.I., Schwarzenbach, R.P., 2002. Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentration in aquatic organisms. Aquatic Science. 64, 20-35.
78.Di Marizo, W., and Saenz, M.E., 2004. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Ecotox. Environ. Safe. 59, 256-262.
79.Schultz, T.W., Sinks, G.D., Bearden, A.P., 1998. QSAR in aquatic toxicology:A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri. In:Devillers J, editor. Comparative QSAR. New York:Taylor & Francis. 51-109.
80.Dearden, J.C., Cronin, M.T.D., Zhao, Y.H., 2000. QSAR studies of Compounds Acting by Polar and Nonpolar Narcosis: an Examination of the role of Polarisability and H ydrogen Bon Marizo ng. Quant. Struct. Act. Relat. 19, 3-9.
81.Verhaar, H.J.M., Van Leeuwen,, C.J., Hermens, J.L.M., 1992. Classfying environmental pollutants: 1-structure-activity relationships for prediction of aquatic toxicity. Chemisphere. 25, 471-491.
82.Veith, G.D., Broderius, S.J., 1990. Rules for distinguishing toxicants that cause typeI and type II narcosis syndrome. Environ. Health Persp. 87, 207-211.
83.Mekenyan, O.G., Veith, G.D., 1994. The electronic factor in QSAR: MO-parameters, competing interactions, reactivity, and toxicity. SAR QSAR Environ. Res. 2, 129-143.
84.Lipnick, R.L., Watson, K.R., Strausz, K.A., 1987. A QSAR study of the acute toxicity of some industrial organic chemicals to goldfish, Narcosis, electrophile and proelectrophilie mechanisms. Xenobiotica. 17, 1011-1025.
85.Seward, J.R., Hamblen, E.L., Schultz, T.W., 2002. Regression comparisons of Tetrahymena pyriformis and Poecilia reticulata toxicity. Chemosphere. 47, 93-101.
86.Hansch, C., Leo, A., 1979. Substituent constants for correlation analysis in chemistry and biology. John Wiley and Sons, New York, p 1-4.
87.Kamaya, Y., Tsuboi, S., Takada, T., Suzuki, K., 2006. Growth Stimulation and Inhibition Effects of 4-Hydroxybenzoic Acid and Some Related Compounds on the Freshwater Green Alga Pseudokirchneriella subcapitata. Arch. Environ. Contam. Toxicol. 51, 537–541.
88.Verhaar, H.J.M., Solb, J., Speksnijder, J., van Leeuwen, C. J., Hermens, J.L.M., 2000. Classifying environmental pollutants: Part 3. External validation of the classification system. Chemosphere 40,875〜883.
89.Schultz, T.W., Cronin, M.T.D., Netzeva, T. I., 2003. The present status of QSAR in toxicology. Journal of molecular structure 622,23-38.
90.FIORENTINO, A., GENTILI, A., ISIDORI, M., MONACO, P., NARDELLI,A., PARRELLA, A.,TEMUSSI, F., 2003. Environmental Effects Caused by Olive Mill Wastewaters: Toxicity Comparison of Low-Molecular-Weight Phenol Components. J. Agric. Food Chem. 51, 1005-1009.
91.Christensen, E.R., Chen, C.Y., 1985. A general noninteractive multiple toxicity model including Probit, Logit, and Weibull transformations. Biometrics. 41, 711-725.
92.Prakash, J., Nirmalakhandan, N., Sun, B., Peace, J., 1996. Toxicity of binary mixtures of organic chemicals to microorganisms. Wat. Res. 30, 1459-1463.
93.Yeh, H.J., Chen, C.Y., 2006 Toxicity assessment of pesticides to Pseudokirchneriella subcapitata under air-tight test environment. J. Hazardous Materials, 131, pp. 6-12.
94.SICILIANO S.D., GERMIDA J. J. 1998. Degradation of chlorinated benzoic acid mixtures by plant-bacteria associations. Environ. Toxic. Chem. 17, 728–733.
95.Gagliardi, L., A. Amato, A. Basili, G. Cavazzutti, E. Gattavecchia, and D. Tonelli. 1984. Determination of preservatives in cosmetic products by reversed-phas e high-performanc e liquid chromatography. J. Chromatogr. 315:465–469.
96.European Union (EU). 1995. The Cosmetics Directive of the European Union. Updated version—incorporating all amendments until August 1, 1995. Dir. 76/768/EEC.
97.Santucci, L. G., ed. 1999. List of Japanese cosmetic ingredients. 4rd ed. Washington, DC: CTFA.
98.Tang Y., Wu M., 2007. The simultaneous separation and determination of five organic acids in food by capillary electrophoresis. Food Chemistry. 103, 243–248.
99.Zhu J.Q., Sheng M.P., Huan Z., Qian X.S., Qiang W., Yan Q., 2006. The effect of temperature on the solubility of benzoic acid derivatives in water. Fluid Phase Equilibria. 250, 165–172.
100.ERICKSON R.J., MCKIM J.M., LIEN G.J., HOFFMAN A.D., BATTERMAN S., 2006. Uptake and elimination of ionizable organic chemicals at fish gills:Ⅱ observed and chemical properties. Environ. Toxic. Chem. 25, 1522–1532.
101.RORIJE E., Peijnenburg W. J.G.M., and Klopman G., 1998 Structural requirements for anaerobic biodegradation of organic chemical: a fragment model analysis. Environ. Toxic. Chem. 17, 1943–1950.
102.Williams1 M., Senaratna T., Dixon K., Sivasithamparam K., 2003. Benzoic acid induces tolerance to biotic stress caused by Phytophthora cinnamomi in Banksia attenuate. Plant Growth Regulation 41, 89–91.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top