跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林詩玫
研究生(外文):Shih-Mei Lin
論文名稱:UVA照射與NO對人類上皮成纖母細胞氧化傷害之影響以及食品、化妝品與細胞成分之保護作用
論文名稱(外文):Oxidative damage to Hs68 cells induced by UVA and NO and protection by food, cosmetic and cellular components
指導教授:胡淼琳胡淼琳引用關係
指導教授(外文):Miao-Lin Hu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:67
中文關鍵詞:活性氧UVA一氧化氮脂質過氧化DNA氧化傷害
外文關鍵詞:ROSUVANOlipid peroxidationDNA oxidative damage
相關次數:
  • 被引用被引用:2
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
已知皮膚長期受到UVA的照射會有致癌的危險。有研究指出UVA對細胞的傷害主要是活性氧(1O2、O2.-、H2O2或.OH)所致,但UVA照射皮膚細胞可能會誘發NO的生成,NO可能和O2.-反應生成活性較大的peroxynitrite (ONOO.),而導致細胞受到更嚴重的傷害。依據此點,本研究分為兩部分,分別探討UVA及NO對人類上皮成纖母細胞的傷害以及數種食品、化妝品及細胞成分之作用。
第一部份 近紫外線照射與鐵離子對人類上皮成纖母細胞之氧化傷害
本研究的目的主要是探討Fe2+與氮基三醋酸(NTA)對UVA所誘發的細胞毒性之影響。由實驗結果得知Fe2+與Fe2+-NTA明顯的會促進UVA所導致之膜脂質過氧化(TBARS之生成)、DNA氧化傷害(DNA strand breakage、8-OHdG之生成)與細胞毒性(降低細胞存活率)(p<0.05)。細胞膜氧化傷害之原因可能為UVA照射細胞所產生的單重態氧(1O2)和細胞膜LH直接反應形成LOOH,Fe2+會依據反應式(1)和LOOH作用
LOOH + Fe2+ → LO. + .OH + Fe3+ (1)
Fe3+被UVA還原成Fe2+,進而持續催化自由基反應,造成脂質嚴重的氧化。DNA傷害之原因可能為Fe2+和UVA照射細胞所生成的H2O2作用產生反應性最強的.OH,因而促進DNA股斷裂及8-OH-dG之生成,最後導致necrosis。而NTA在此試驗模式下明顯的促進Fe2+對Hs68 cells之DNA氧化傷害,可能的原因為NTA改變鐵離子在細胞內存在的形式、分佈或redox potential之改變有關。由實驗的結果發現脂質過氧化與DNA股斷裂之間沒有因果關係,故脂質過氧化與DNA氧化傷害之因果論有待重新評估。
第二部份 數種食品、化妝品及細胞成分之抗氧化能力研究
本研究的目的為探討數種食品(maltol)、化妝品(benzophenone、BM-DBM與boldine)及細胞成分(DMG與2,3-DPG)對UVA及NO所造成的氧化傷害之作用。在UVA傷害方面:這六種皆不具抑制脂質過氧化之能力,其中maltol與BM-DBM卻有促進的作用。但DMG、2,3-DPG與boldine能降低UVA對DNA的傷害,而maltol與BM-DBM卻會促進DNA傷害。在NO的傷害方面:因為NO不會引發脂質過氧化反應,故本部分只探討對DNA傷害之作用。2,3-DPG、benzophenone、BM-DBM及boldine皆能抑制NO所引發之DNA strand breakage,其中以BM-DBM抑制作用最佳。由此推論2,3-DPG與boldine可能可以抵抗UVA與NO所造成的氧化壓力。
結論
綜合以上所述,可知UVA照射會造成Hs68 cells氧化傷害,而Fe2+-NTA會顯著的促進UVA所引發之脂質過氧化與DNA氧化傷害(p<0.05),其作用機制可能是NTA改變了鐵離子在細胞內存在的形式、分佈或redox potential之改變有關,此種傷害會導致細胞壞死(necrosis)或增加細胞遺傳訊息突變之危害。
已知受到UVA照射之細胞會因DNA受損而突變或癌化,而UVA照射會誘發NO的生成, NO會刺激黑色素細胞產生melanin而造成黑色素沈澱,並會引發發炎反應而導致紅斑的生成。而2,3-DPG與boldine皆能抑制UVA與NO所造成的DNA傷害,故2,3-DPG與boldine可能具有應用為防曬品之潛力。
It is well known that cumulative exposure of human skin to UVA results in increased risk of skin cancer. Some studies indicated that cellular lesion induced by UVA was due to reactive oxygen species (ROS; 1O2, O2.-, H2O2 or .OH). In UVA treated cells, the simultaneous production of NO and ROS might result in the formation of ONOO.- and increasing cellular damage. Therefore, this thesis work was divided into two parts. One was to investigate oxidative damage to human foreskin fibroblasts (Hs68 cells) by UVA and iron ions, the other was to study protective effect of food, cosmetic and cellular components against UVA- or NO-induced oxidative damage in Hs68 cells.
PartⅠ Oxidative damage to Hs68 cells induced by UVA and iron ions
This part of study was to investigate effect of ferrous ion (Fe2+) and nitrilotriacetate (NTA) on cytotoxicity induced by UVA. The results show that Fe2+ and Fe2+-NTA significantly promoted membrane lipid peroxidation (the generation of TBARS was increased), DNA oxidative damage (DNA strand breakage and the generation of 8-hydroxyguanosine (8-OH-dG)) and cytotoxicity (reduction of cellular viability)(p<0.05). Lipid peroxidation may be caused by singlet oxygen (1O2 ) generated from cells during UVA irradiation, which reacted with membrane lipid (LH) to form lipid hydroxyperoxide (LOOH). The role of iron ions in lipid peroxidation is likely in the breakdown of LOOH according to reaction (1):
LOOH + Fe2+→LO. + .OH + Fe3+ (1)
Fe3+ is thought to be reduced by UVA to Fe2+, which induces the generation of free radical continuously to increase lipid peroxidation. DNA oxidative damage may be caused by reaction of Fe2+ with H2O2 generated from UVA irradiated cells to produce .OH, which induces DNA strand breakage and the formation of 8-OH-dG, leading to necrosis. In the experimental model, NTA significantly promoted DNA oxidative damage in Hs68 cells induced by Fe2+, possibly by chelation of iron ions, leading to changes of distribution and redox potential of cellular iron ions. The result also shows that DNA damage is not a result of lipid peroxidation in this UVA/Fe2+-NTA/cell system.
Part Ⅱ Protective effect of food, cosmetic and cellular components against UVA- or NO-induced oxidative damage in Hs68 cells
This part of study was to investigate the effects of several components of food (maltol), cosmetics (benzophenone, butyl methoxydibenzoylmethane (BM-DBM) and boldine) and mammalian cells (dimethylglycine (DMG) and diphosphoglycerate (DPG)) on oxidative damage induced by UVA or NO. In cellular damage induced by UVA, none of the six compounds inhibited lipid peroxidation. In fact, matol and BM-DBM enhanced lipid peroxidation. DMG, 2,3-DPG and boldine inhibited DNA oxidative damage induced by UVA, but maltol and BM-DBM could enhance it. Cellular damage induced by NO: in the present study, we only investigated DNA oxidative damage induced by NO because NO might not intiate lipid peroxidation. The result shows that 2,3-DPG, benzophenone, BM-DBM and boldine could inhibit DNA strand breakage induced by NO. Among them, BM-DBM had better inhibitory effect. According to it, we suggest that 2,3-DPG and boldine may protect against oxidative stress induced by UVA and NO.
Conclusion
The present results show that Fe2+-NTA strongly enhanced lipid peroxidation and DNA oxidative damage induced by UVA; the mechanism may be that NTA changed the distribution and redox potential of cellular iron ions. Such damage leads to cell death - necrosis, and can increase the risk of mutation of DNA and carcinogenesis.
UVA radiation may induce the generation of NO, which may stimulate melanocytes to generate and accumulate melanin. NO may induce inflammatory response and result in the formation of erythema. 2,3-DPG and boldine can inhibit DNA oxidative damage induced by UVA and NO, and they may have potentials to be sunscreens.
1.前言………………………………………………………………1
1.1緒論…………………………………………………………………...1
1.2第一部份:近紫外線照射與鐵離子對人類上皮成纖母細胞之氧化傷害……………………………………………………………….……..1
1.3第二部份:數種細胞、食品及化妝品成分之抗氧化能力研究……3
1.4 NO 之生理毒性…………………………………………………….…6
1.5研究目標……………………………………………………………... .6
2.材料與方法…………………………………………………….…7
2.1材料…..…………………………………….…………………………….7
2.2抗氧化試驗……………………………………….……………….……...7
2.2.1去氧核醣降解試驗……………………………………………...7
2.2.2螯合亞鐵離子能力之測定……………………………………...8
2.2.3抗脂質過氧化能力之測定……………………………………...9
2.2.4紅血球之製備…………………………………………………...9
2.2.5 TBARS含量之測定…………………………………..……….10
2.2.6溶血程度之測定……………………………………....……….10
2.3 UVA照射劑量之測定……………………..……….………….………..10
2.4細胞培養…………….…………………………..….………….………..10
2.5細胞解凍與保存…….…………………………..….………….………..11
2.6細胞之處理……….…………………………..….…………….………..11
2.6.1 UVA照射處理…….…………… …..….………….………….11
2.6.2 SNP處理…………..…………… …..….………….………….12
2.7細胞存活率分析(MTT viability assay)……..….………….……………12
2.8蛋白質含量之測定…………………...……..….………….……………13
2.9脂質過氧化之測定…………………...……..….………….……………13
2.10 DNA損傷(DNA damage)之測定…...……..….………….……………13
2.10.1 DNA之純化……..…………………………………..……….13
2.10.2 Comet assay (or single cell gel electrophoresis assay)……….13
2.10.3 8-OH-dG含量之測定………………………………..……….14
2.10.4 DNA fragmentation之測定…………………………….…….15
2.11 Histone-associated DNA fragmentation test(HADF)…………………15
2.12統計分析……………………….…...……..….………….……………15
3.結果…….………………………………………………………..16
3.1 UVA與鐵離子對Hs68 cells 之氧化傷害...….………….……………16
3.1.1細胞形態之改變…..…………………………………..……….16
3.1.2細胞之存活率……..…………………………………..……….16
3.1.3脂質過氧化………..…………………………………..……….16
3.1.4 DNA氧化傷害..…..…………………………………..……….16
3.1.4.1 DNA strand breakage…………………………………….16
3.1.4.2 8-OH-dG………………………………………………….17
3.1.4.3 DNA fragmentation…………………………………...….17
3.1.4.4 Histone-associated DNA fragmentation…………………17
3.1.5 BHT對UVA照射與Fe2+-NTA所引發的氧化傷害之影響….18
3.2數種細胞、食品及化妝品成分之抗氧化能力研究..….………….……18
3.2.1 DMG及2,3-DPG螯合鐵離子能力之測定…………..……….18
3.2.2 DMG及2,3-DPG對去氧核醣氧化傷害之影響.……………..18
3.2.3 DMG及2,3-DPG之抗脂質過氧化活性……………..……….19
3.2.4對紅血球脂質過氧化之影響……………..…………..……….19
3.2.5對紅血球溶血之影響……………………..…………..……….20
3.2.6 DMG、2,3-DPG與maltol對UVA/ Fe2+-NTA所引發之氧化傷害的影響…………..…………..…………………………….20
3.2.7 Benzophenone、BM-DBM與Boldine對UVA所引發之氧化傷害的影響…………..…………..…………………………….21
3.2.8 數種細胞、食品及化妝品成分對NO所引發之氧化傷害的影響……………..…………..………………………………….22
4.討論…….………………………………………………………..23
4.1第一部份:UVA照射與鐵離子對Hs68 cells 之氧化傷害 …23
4.1.1脂質過氧化……………………………..……………..……….23
4.1.2 DNA氧化傷害..…..…………………………………..……….23
4.1.3脂質過氧化與 DNA氧化傷害..……………………..……….24
4.1.4 DNA傷害、細胞死亡與基因毒性…………………..……….25
4.2數種細胞、食品及化妝品成分之抗氧化能力研究..….………26
4.2.1 DMG之抗氧化力……………………………………..……….26
4.2.2 2,3-DPG之抗氧化力……………………………………..…26
4.2.3 Maltol之抗氧化力………..…………………………..……….27
4.2.4 Benzophenone、BM-DBM與boldine之抗氧化力……….…27
5.結論.…….……………………………………………………….29
參考文獻….……………………………………………………….31
圖表……….……………………………………………………….44
1. Halliwell, B. and Gutteridge, J. M. C. Free radicals in
biology and medicine, 3rd ed., Clarendon Press, Oxford, 1998.
2. Darley-Usmar, V. and Halliwell, B. (1996) Blood radicals:
Reactive nitrogen species, reactive oxygen species,
transition metal ions and the vascular system. Pharma. Res.
13:649-662.
3. Halliwell, B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609-1623.
4. Darley-Usmar, V., Wiseman, H. and Halliwell, B. (1995) Nitric oxide and oxygen radicals: a question of balance. FEBS Lett. 369:131-135.
5. Cadet, J., Berger, M., Douki, T., Morin, B., Raoul, S., Ravanat, J.-L. and Spinelli, S. (1997) Effect of UV and visible radiation on DNA-final base damage. Biol. Chem. 378:1275-1286.
6. Tyrrell, R. M. and Keyse, S. M. (1990) New trends in photobiology. The interaction of UVA radiation with cultured cells. J. Photochem. Photobiol. B:Biol. 4:349-361.
7. Cunningham, M. L., Krinsky, S. M., Giovanazzi, S. M. and Peak, M. J. (1985) Superoxide anion is generated from cellular metabolites by solar radiation and its components. J. Free Radic. Biol. Med. 1:381-386.
8. Didier, C., Emonet-Piccardi, N., Beani, J.-C., Cadet, J. and Richard, M.-J. (1999) L-arginine increases UVA cytotoxicity in irradiated human keratinocyte cell line: potential role of nitric oxide. FASEB J. 13:1817-1824.
9. Friedman, R. J., Rigel, D. S., Berson, D. S. and Rivers, J. Skin cancer: basal cell and squamous cell carcinoma. In: Holleb, A. I.; Fink, D. J.; and Murphy, G. P., eds. American Cancer Society textbook of clinical oncology. Atlanta: The American Cancer Society, Inc. 1991:290-305.
10. Miller, D. L. and Weinstock, M. A. (1994) Nonmelanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol. 30:774-778.
11. Moan, J. and Dahlback, A. Ultraviolet radiation and skin cancer. Epidemiological data from Scandinavia. In:Young, A. R., Bjorn, L. O., Moan, J. and Nultsch W., eds. Environmental UV Photobiology, Plenum, New York, 1993.
12. Sage, B., Lamolet, E., Brulay, E., Moustacchi, E., Chateauneuf, A. and Drobetsky, E. A. (1996) Mutagenic specificity of solar UV light in nucleotide excision repair-deficient rodent cells. Proc. Natl. Acad. Sci. USA 93: 176-180.
13. Ito, K. and Kawanishi, S. (1997) Site-specific DNA damage induced by UVA radiation in the presence of endogenous photosensitizer. Biol. Chem. 378:1307-1312.
14. Peak, M. J., Peak, J. G. and Carnes, B. A. (1987) Induction of direct and indirect single-strand breaks in human cell DNA by far- and near-ultraviolet radiations: action spectrum and mechanisms. Photochem. Photobiol. 45:381-387.
15. Zhang, X. S., Rosenstein, B. S., Wang, Y., Lebwohl, M., Mitchell, D. M. and Wei, H. C. (1997) Induction of 8-oxo-7,8-dihydro-2''-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells. Photochem. Photobiol. 65:119-124.
16. Kielbassa, C., Roza, L. and Epe, B. (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811-816.
17. Kvam, E. and Tyrrel, R. M. (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation . Carcinogenesis 18:2379-2384.
18. Roza, L., Van der Schans, G. P. and Lohman, P. H. M. (1985) The induction and repair of DNA damage and its influence on cell death in primary human fibroblasts exposed to UVA or UVC irradiation. Mutat. Res. 146:89-98.
19. Henriksen, E. K., Moan, J., Kaalhus, O. and Brunborg, G. (1995) Induction and repair of DNA damage in UV-irradiated human lymphocytes. Spectral differences and repair kinetics. J. Photochem. Photobiol. B. Biol 32:39-48
20. Lehmann. J., Pollet, D., Peker, S., Steinkraus, V. and Hoppe, U. (1998) Kinetics of DNA strand breaks and protection by antioxidants in UVA- or UVB-irradiated HaCaT keratinocytes using the single cell gel electrophoresis assay. Mutat. Res. 407:97-108.
21. Jansen, C. (1995) Effect of sunlight on the skin-what have we learned?Nord. Med. 110:85-87.
22. Bissett, D. L., Chatterjee, R. and Hannon, D. P. (1991) Chronic ultraviolet radiation-induced increase in skin iron and the photoprotective effect of topically applied iron chelators. Photochem. Photobiol. 54:215-223.
23. Aubailly, M., Santus, R. and Salmon, S. (1991) Ferrous ion release from ferritin by ultraviolet-A radiation. Photochem. Photobiol. 54:769-773.
24. Morliere, P., Salmon, S., Aubailly, M., Risler, A. and Santus, R. (1997) Sensitization of skin fibroblasts to UVA by excess iron. Biochimica. et Biophysica. Acta. 1334:283-290.
25. Halliwell, B. and Gutteridge, J. M. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. [Review] Methods Enzymol. 186:1-85.
26. Seligman, P. A., Klausner, R. D. and Huebers, H. A. Molecular mechanisms of iron metabolism. In: Stamatoyannopoulos, G., Nienhuis, A. W., Leder, P., Majerus, P. W. eds. Molecular basis of blood diseases. Philadelphis: W. B. Saunders, 1987:219-244.
27. Grootveld, M., Bell, J. D., Halliwell, B and Aruoma, O. I. (1989) Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. J. Biol. Chem. 264:4417-4422.
28. Bartlett, G. R. (1976) Iron nucleotides in human and rat red cells. Biochem. Biophys. Res. Commun. 70:1063-1070.
29. Asaumi, A., Ogino, T., Akiyama, T., Kawabata, T. and Okada, S. (1996) Oxidative damages by iron-chelate complexes depend on the interaction with the target molecules. Biochem. Mol. Biol. Intern. 39 :77-86.
30. Anderson, R. L., Bishop, W. E. and Campbell, R. L. (1985) A review of the environmental and mammalian toxicology of nitrilotriacetic acid. Crit. Rev. Toxicol. 15:1-102.
31. Li, J. L., Okada, S., Hamazaki, S., Ebina, Y. and Midorikawa, O. (1987) Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate. Cancer Res. 47:1867-1869.
32. Hamazaki, S., Okada, S., Ebina, Y. and Midorikawa, O. (1985) Acute renal failure and glucosuria induced by ferric nitrilotriacetate in rats. Toxicol. Applied Pharmacol. 77:267-274.
33. Iqbal, M., Giri, U. and Athar, M. (1995) Ferric nitrilotriacetate (Fe-NTA) is a potent hepatic tumor promoter and acts through the generation of oxidative stress. Biochem. Biophys. Res. Commu. 212:557-563.
34. Morliere, P., Moysan, A., Santus, R., Huppe, G., Maziere, J.-M. and Dubertret, L. (1991) UVA-induced lipid peroxidation in cultured human fibroblasts. Biochimica. et Biophysica. Acta. 1084:261-268.
35. Kuluncsics, Z., Perdiz, D., Brulay, E., Muel, B. and Sage, E. (1999) Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts. J. Photochem. Photobiol. B: Biol. 49:71-80.
36. Hu, M.-L. and Tappel, A. L. (1992) Potentiation of oxidative damage to proteins by ultroviolet-A and protection by antioxidant. Photochem. Photobiol 56:357-363.
37. Shih, M.-K. and Hu, M.-L. (1996) UVA-potentiated damage to calf thymus DNA by fenton reaction system and protection by para-aminobenzoic acid. Photochem. Photobiol. 63:286-391.
38. Vile, G. F. and Tyrrell, R. M. (1995) UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic. Biol. Medic. 18:721-730.
39. Shih, M.-K. and Hu, M.-L. (1999) UVA-induced oxidative damage to rat liver nuclei :reduction of iron ions and the relationship between lipid peroxidation and DNA damage. Mutat. Res. 438:125-132.
40. Bolton, S. and Null, G. (1982) Vitamin B-15, a review and update. J. Orthomol. Psych. 11:260.
41. Graber, C. D., Goust, J. M., Glassman, A. D., Kendall, R. and Loadholt, C. B. (1981) Immunomodulating properties of Dimethylglycine in humans. J. Infect. Dis. 143:101-105.
42. Hoorn, A. J. W. (1989) Dimethylglycine and chemically related amines tested for mutagenicity under potential nitrosation conditions. Mutat. Res. 222:343-350.
43. Lenfant, C., Torrance, J., English, E., Finch, C. A., Reynafarje, C., Ramos, J. and Faura, J.(1968) Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. Clin. Invest. 47:2652-2656.
11. Kiss, T., Zatta, P. and Corain, B. (1996) Interaction of aluminium (Ⅲ) with phosphate-binding site; biological aspects and implications. Coordination Chem. Review 149:329-346.
45. Halliwell, B. and Gutteridge, J. M. C. (1990) Role of free radicals and catalytic metal ions in human disease. Methods Enzymol. 186:1-85.
46. Johnson, R. R., Alford, E. D. and Kinzer, J. (1969) Formation of sucrose pyrolysis products. J. Agr. Food Chem. 17:22-24.
47. Bjeldanes, L. F. and Chew, H. (1979) Mutagenicity of 1,2-dicarbonyl compounds: maltol, kojic acid, diacetyl and related substances. Mutat. Res. 67:367-371.
11. 蔡琇萱(1996)Maltol, para-Aminobenzoic acid及Trolox對紅血球遭受氧化傷害時抗氧化能力之比較。國立中興大學食品科學研究所碩士論文。
49. Kim, H. C., Choi, D. Y., Jhoo, W. K., Lee, D. W., Koo, C. H. and Kim, C. (1997) Aspalatone, a new antiplatelet agent, attenuates the neurotoxicity induced by kainic acid in the rat. Life Sci. 61(24):373-381.
50. Singh, R. K. and Barrand, M. A. (1990) Lipid peroxidation effects of a novel iron compound, free maltol. A comparison with ferrous sulphate. J. Pharm. Pharmacol. 42:276-279.
51. Kadry, A. M., Okereke, C. S., Abdel-Rahamn, M. S., Fridman, M. A. and Davis, R. A. (1995) Pharmacokinetics of benzophenones-3 after oral exposure in male rat. J. Applied Toxicol.15:97-102.
52. Gange, R. W., Soparkar, A., Matzinger, E., Dromgoole, S. H., Sefton, J. and DeGryse, R. (1986) Efficacy of a sunscreen containing butyl methoxy-dibenzoylmethane against ultraviolet A radiation in photosensitized subjects. J. Am. Acad. Dermatol. 15:494-499.
53. Andrae, I., Bringhen, F., Bohm, H., Gonzenbach, H., Hill, T., Mulroy, L. and Truscott, T. G. (1997) A UVA filter (4-tert-butyl-4''-methoxydibenzoylmethane): photoprotection reflects photophysical properties. J. Photochem. Photobiol. B: Biol. 37:147-150.
54. Halliwell, B., Aeschbach, R., Loliger, J. and Aruoma, O. I. (1995) The characterization of antioxidants. Food Chem. Toxicol. 33:601-617.
55. Prestwich, G. D., Dorman, G., Elliott, J. T., Marecak, D. M. and Chaudhary, A. (1997) Benzophenone photoprobes for phosphoinositides, peptides and drugs. Photochem. Photobiol. 65:222-234.
56. Sun, J.-S., Shieh, K.-M., Chiang, H.-C., Sheu, S.-Y., Hang, Y.-S., Lu, F.-J. and Tsuang, Y.-H. (1999) Scavenging effect of benzophenones on the oxidative stress of skeletal muscle cells. Free Radic. Biol. Med. 26:1100-1107.
57. Montes, M. and Wilkomirsky, T. Peumus boldus Mol. In: Montes, M.; Wilkomirsky, T., eds. Medicina tradicional chilena. Concepci''on, Chile: Editorial de la Universidad de Concepci''on; 1985:120-123.
58. Mart''inez, L. A., R''ios, J. L., Pay''a, M. and Alcaraz, M. J. (1992) Inhibition of nonenzymic lipid peroxidatrion by benzylisoquinoline alkaloids. Free Radic. Biol. Med. 12:287-292.
59. Ubeda, A., Montesinos, C., Pay''a, M. and Alcaraz, M. J. (1993) Iron-reducing and free-radical -scavenging properties of apomorphine and some related benzylisoquinolines. Free Radic. Biol. Med. 15:159-167.
60. Cederbaum, A. I., Kukiellka, E. and Speisky, H. (1992) Inhibition of rat liver microsomal lipid peroxidation by boldine. Biochem. Pharmacol. 44:1765-1772.
61. Kringstein, P. and Cederbaum, A. I. (1995) Boldine prevents human liver microsomal lipid peroxidation and inactivation of cytochrome P4502E1. Free Radic. Biol. Med. 18:559-563.
62. Kreitmair, H. (1952) Pharmakologische Wirkung des alkaloids aus Peumus boldus Molina. Die Pharmazie 7:507-511.
63. Moreno, P. R. H., Vargas, V. M. F., Andrade, H. H. R., Henriques, A. T. and Henriques, J. A. P. (1991) Genotoxicity of the boldine aporphine alkaloid in prokaryotic and eukaryotic organisms. Mutat. Res. 260:145-152.
64. Moncada, S. and Higgs, A. (1993) The L-arginine-nitric oxide pathway. New Engl. J. Med. 329:2002-2012.
65. Southam, E. and Garthwaite, J. (1993) The nitric oxide-cyclic GMP signalling pathway in rat brain. Neuropharmacology 32:1267-1277.
66. Schmidt, H. H. and Walter, U. (1994) NO at work. Cell. 78(6):919-925.
67. Hibbs, J. B., Tanitro, R. R., Vavrin, Z., Granger, D. L., Drapier, J. C., Amber, I. J. and Lancaster, J. R. In: Nitric oxide from L-arginine: a bioregulatory system, Elsevier, Amsterdam, 1990:189-223.
68. Nussler, A. K. and Billiar, T. R. (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol. 54(2):171-178.
69. Tamir, S. and Tannenbaum, S. R. (1996) The role of nitric oxide (NO.) in the carcinogenic process. Biochimica et Biophysica Acta. 1288:F31-36.
70. Muhl, H., Sandau, K., Brune, B., Briner, V. A. and Pfeilschifter, J. (1996) Nitric oxide donors induce apoptosis in glomerular mesangial cells, epithelial cells and endothelial cells. Eur, J. Pharmacol. 317:137-149.
71. Messmer, U. K., Ankarcrona, M., Nicotera, P. and Brune, B. (1994) p53 expression in nitric oxide-induced apoptosis. FEBS Lett. 355:23-26.
72. Messmer, U. K., Reed, U. K. and Brune, B. (1996) Bcl-2 protects macrophages from nitric oxide-induced apoptosis. J. Biol. Chem. 271:20192-20197.
73. Okuda, Y., Sakoda, S., Shimaoka, M. and Yanagihara, T. (1996) Nitric oxide induces apoptosis in mouse splenic T lymphocytes. Immunol. Lett. 52:135-138.
74. Asagiri. K., Nakasuka, S., Kimura, Y., Kamada, Y., Noguchi, S. and Kudo, T. (1997) Possible involvement of nitric oxide in LPS-induced apoptotic cell death in trophoblasts. Jpn. J. Pharmacol. 75:94P.
75. Beckman, J. S. (1991) The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J. Dev. Physiol. 15:53-59.
76. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244-4250.
77. Guyton, K. Z. and Kensler, T. W. (1993) Oxidative mechanisms in carcinogenesis. Br. Med. Bull. 49:523-544.
78. Simic, M. C. (1994) DNS markers of oxidative processes in vitro: Relevance to carcinogenesis and anticarcinogenesis. Cancer Res. 54:1918s-1923s.
79. Cerutti, P. A. (1985) Prooxidant states and tumor promotion. Science 227:375-381.
80. Johnson, C. C. (1929) The actions and toxicity of sodium nitroprusside. Arch. Int. Pharmacodyn. Ther. 35:480-489.
81. Ignarro, L. J. and Kadowitz, P. J. (1985) The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu. Rev. Toxicol. 25:171-191.
82. Feelisch, M. and Noack, E. (1991) Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. J. Cardiovasc Pharmacol. 17:S25-33.
83. Ignarro, L. J., Edwards, J. C., Gruetter, D. Y., Barry, B. K. and Grutter, C. A. (1980) Possible involvement of S-nitrosothiol in the activation of guanylate cyclase by nitroso compounds. FEBS Lett. 110:275-278.
84. Halliwell, B., Gutteridge, J. M. C. and Aruoma, O. I. (1987) The deoxyribose method: A simple “test-tube”assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem.165:215-219.
85. Dinins, T. C. P., Maderia, V. M. C. and Almeida, L. M. (1994) Action of phenolic derivatives (acetaminophen, salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315:161-169.
86. Kuo, J.-M., Yeh, D.-B. and Pan, B. S. (1999) Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 47:3206-3209.
87. Chiu, D. T. -Y. and Claster, S. (1988) Measurement of red cell membrane oxidation and the generation of oxidative intermediates. Meth. Hematol. 19:203-236.
88. Draper, H. H. and Csallany, A. S. (1969) A simplified hemolysis test for vitamine E deficiency. J. Nutr. 98:390-394.
11. Mosmann, T.(1983)Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal Immuno. Methods. 65:55-63.
90. Loveland, B. E., Johns, T. G., Mackay, I. R., Vaillant, F., Wang, Z. X. and Hertzog, P. J. (1992) Validation of the MTT dye assay for enumeration of cells in proliferative and antiproliferative assays. Biochem. Intern. 27:501-510.
91. Buege, A. J. and Aust, S. D. (1978) Microsomal lipid peroxidation. Methods Enzymol. 52:302-310.
92. Yagi, K.(1984) Assay for blood plasma or serum. Methods Enzymol. 105:328-331.
93. Singh, N. P., McCoy, M. T., Tice, R. R. and Schneider, E. L. (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175:184-191.
94. Birnboim, H. C. (1990) Fluorometric analysis of DNA unwinding to study strand breaks and repair in mammalian cells. Methods Enzymol. 186:550-555.
95. Karol, B., Renata, K., Wieslawa, W. and Ryszard, O. (1996) 8-Oxo-2''-deoxyguanosine level in lymphocytes DNA of cancer patients undergoing radiotherapy. Cancer Lett. 99:93-97.
96. Shigenaga, M. K., Park, J.-W., Cundy, K. C., Gimeno, C. J. and Ames, B. N. (1990) In vivo oxidative DNA damage : measurement of 8-hydroxy-2''-deoxyguanosine in DNA and urine by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 186:521-530.
97. Rohn, T. T., Hinds, T. R. and Vincenzi, F. F. (1993) Inhibition of the Ca pump of intact red blood cells by t-butyl hydroperoxide: importance of glutathione peroxidase. Biochim. Biophys. Acta 1153:67-76.
98. Trotta, R. J., Sullivan, S. G. and Stern, A. (1982) Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate. Biochem. J. 204:405-415.
99. Trotta, R. J., Sullivan, S. G. and Stern, A. (1983) Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis. Biochem. J. 212:759-772.
100. Van der Zee, J., Stevenick, J. V., Koster, J. F. and Dubbleman, T. M. A. R. (1989) Inhibition of enzymes and oxidative damage of red blood cells induced by t-butylhydroperoxide-derived radicals. Biochem. Biophys. Acta 980:175-180.
101. Darley-Usmar, V. M., Hogg, N., O''Leary, V. J., Wilson, M. T. and Moncada, S. (1992) The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic. Res. Commun. 17:9-20.
102. Halliwell, B. and Chirico, S. (1993). Lipids peroxidation: its mechanism, measurements and significance. Am. J. Clin. Nutr. 57(suppl.):715S-725S.
103. Shih, M. -K. and Hu, M.-L. (1999). Relative roles of metal ions and singlet oxygen in UVA-induced liposomal lipid peroxidation. J. Inorg. Biochem. 77/3-4:225-230.
104. Halliwell, B. (1995) Oxidation of low-density lipoproteins: questions of initiation, propagation and the effect of antioxidants. Am. J. Clin. Nutr. 61(suppl):670S-677S.
105. Dizdaroglu, M. (1991) Chemical determination of free radical-induced damage to DNA. Free Radic. Biol. Med. 10:225-242.
106. Hartwig, A., Klyszcz-Nasko, H., Schlepegrell, R. and Beyersmann, D. (1993) Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchange. Carcinogenesis. 14:107-112.
107. Mello Filho, A. C. and Meneghini, R. (1984). In vivo formation of single strand breaks in DNA by hydrogenperoxide is mediated by the Haber-Weiss reaction. Biochem. Biophys. Acta. 781:56-63.
108. Shires, T. K. (1982) Iron-induced DNA damage and synthesis in isolated rat liver nuclei. Biochem. J. 205:321-329.
109. Reif, D. W. (1992) Ferritin as a source of iron for oxidative damage. Free Radic. Biol. Med. 12:417-427.
110. Fraga, C. C. and Tappel, A. L. (1988) Damage to DNA concurrent with lipid peroxidation in rat liver slices. Biochem. J. 252:893-896.
111. Hruszkewycz, A. M. (1988) Evidence for mitochondria DNA damage by lipid peroxidation. Biochem. Biophys. Res. Commun. 153:191-197.
112. Sahu, S. C. and Gray, G. C. (1993) Interactions of flavonoids, trace metal and oxygen: nuclear DNA damage and lipid peroxidation induced by myricetin. Cancer Lett. 70:73-79.
113. Hruszkewycz, A. M. (1988) Evidence for mitochondria DNA damage by lipid peroxidation. Biochem. Biophys. Res. Commun. 153: 191-197.
114. Hruszkewycz, A. M. and Bergtold, D. S. (1990) The 8-hydroxyguanine content of isolated mitochondria increases with lipid peroxidation. Mutat. Res. 244:123-128.
115. Zastawny, T. H., Altima, S. A., Randers-Eichhorn, L., Madurawe, R., Lumpkin, J. A., Dizdaroglu, M. and Rao, G. (1995) DNA base modifications and membrane damage in cultured mammalian cells treated with iron ions. Free Radic. Biol. Med. 18:1013-1022.
116. Vaca, C. E., Wilhelm, J. and Harms-Ringdahl, M. (1988) Interaction of lipid preoxidation products with DNA. A review. Mutat. Res. 195:137-149.
117. Vaca, C. E., Wilhelm, J. and Harms-Ringdahl, M. (1988) Studies on lipid peroxidation in rat liver nuclei and isolated nuclear membranes. Biochim. Biophys. Acta. 958:375-387.
118. Ames, B. N. and Gold, L. S. (1991) Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 250:3-16.
119. Halliwell, B. (1991) Drug antioxidant effects. Drugs 42:569-605.
120. Keer, J. F. R., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239-257.
121. Wood, M. L., Dizdaroglu, M., Gajewski, E. and Essigman, J. M. (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29:7024-7032.
122. Floyd, R. A. (1990) The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis 11:1447-1450.
123. Nakatsuka, S., Tanaka, H. and Namba, M. (1990) Mutagenic effects of ferric nitrilotriacetate (Fe-NTA) on V79 Chinesis hamster cells and its inhibitory effects on cell-cell communication. Carcinogenesis 11:257-260.
124. Hartwig, A., Klyszcz-Nasko, H., Schlepegrell, R. and Beyersmann, D. (1993) Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchange. Carcinogenesis 14:107-112.
125. Loft, S. and Poulsen, H. E. (1996) Cancer risk and oxidative DNA damage in man. J. Mol. Med. 74:297-312.
126. Bradley, M. O. and Taylor, V. I. (1983) Repair-induced DNA double strand breaks after ultraviolet-light and ether aphidicolin or 1-β-D-arabinofuranosylcytosine / hydroxyurea. Carcinogenesis 4:1513-1517.
127. Adam, W., Andler, S., Saha-Moller, C. R. and Schonberger, A. (1996) Inhibitory effect of ethyl oleate hydroperoxide and alcohol in photosensitized oxidative DNA damage. J. Photochem. Photobiol. B: Biology 34:51-58.
128. Hayashi, M., Kishi, M., Sofuni, T., Ishidate, M. Jr. (1988) Micronucleus tests in mice on 39 food additives and eight miscellaneous chemicals. Food Chem. Toxicol. 26:487-500.
129. Katsetos, C. D., Savory, J., Herman, M. M., Carpenter, R. M., Frankfurter, A., Hewitt, C. D. and Wills, M. R. (1990) Neuronal cytoskeletal lesions induced in the CNS by intraventricular and intravenous aluminium maltol in rabbits.
Neuropathol. Appl. Neurobiol. 16:511-528.
130. Hironishi, M., Kordek, R., Yanagihara, R. and Garruto, R. M. (1996) Maltol (3-hydroxy-2-methyl-4-pyrone ) toxicity in neuroblastoma cell lines and primary murine fetal hippocampal neuronal cultures. Neurodegeneration 5:325-329.
131. Cadet, J., Berger, M., Morin, B., Ravanat, J.-L., Raoul, S., Buchko, G. W. and Weinfeld, M. (1994) Photooxidation reactions of the guanine moiety of DNA and nucleosides. Spectrum. 7:21-24.
132. Yenes, S. and Messeguer, A. (1999) A study of the reaction of different phenol substrantes with nitric oxide and peroxynitrite. Tetrahedron 55: 14111-14122
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊