|
[1] C. N. Hung, X. S. Zhu, Construction for Strongly k-Hamiltonian Graphs, proceedings of the 19th Workshop on Combinatorial Mathematics and Computation Theory (2002), p. 17-22. [2] M. Lewinter, W. Widulski, Hyper-Hamilton laceable and caterpillar-spannable product graphs, Comput. Math. Appl. 34 (1997), p. 99-104. [3] T. K. Li, J. J. M. Tan, L. H. Hsu, Hamiltonian laceability on edge fault star graph, Parallel and Distributed Systems (2002), Proceedings. Ninth International Conference, p. 23-28. [4] G. Simmons, Almost all n-dimensional rectangular lattices are Hamilton laceable, Congr. Numer. 21 (1978), p. 103-108. [5] C. H. Tsai, J. J. M. Tan, T. Liang, L. H. Hsu, Fault-tolerant Hamiltonian laceability of hypercubes, Information Processing Letters 83 (2002), p. 301-306. [6] S. Y. Hsieh, G. H. Chen, C. W. Ho, Hamiltonian —laceability of star graphs, Networks 36 (2000), p. 225-232
|