跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜昭緯
研究生(外文):Chao-Wei Du
論文名稱:HastelloyX超合金經惰性氣體鎢極銲與雷射銲後機械性質之比較
論文名稱(外文):Comparisons of Mechanical Properties of GTAW and LASER Welded Hastelloy X Superalloy
指導教授:郭振明
指導教授(外文):Chen-ming Kuo
學位類別:碩士
校院名稱:義守大學
系所名稱:機械與自動化工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:48
中文關鍵詞:惰性氣體鎢極銲Nd-YAG脈衝式雷射銲X-ray繞射法拉伸實驗
外文關鍵詞:Nd-YAG laser weldingGTAWHastelloy XTensile Property TestingX-ray diffraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:639
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對機件因金屬疲乏及結構老化,出現之裂紋無法以一般傳統惰性氣體鎢極銲(GTAW)加工修補,導致機件之缺陷明顯增加的窘境。雖然有些裂紋在允許軍用規範內仍可合格出廠,但有些問題(如熱變形、硬銲區)卻無法從傳統銲接技術中克服。為了降低此缺陷,需尋找新製程來降低機件報廢率以節省公帑之可行性。故本實驗嘗試以Hastelloy X合金為材料並以Nd:YAG脈衝式雷射銲補及傳統銲接的方式來做比較,施與機械性質之測試及分析。並利用OM、SEM觀察巨、微觀組織結構及微硬度實驗的變化情況。另一方面則利用X-ray繞射法來量取銲後之殘留應力及應力分佈的情況。由本研究可得知傳統銲接後於拉伸試驗有較佳的抗拉強度及延展性。由殘留應力之量測,Nd:YAG雷射銲接殘留應力能量僅集中於銲道兩側(3mm)處,而殘留應力急速下降且直接趨緩;但GTAW銲接則有較大的振幅,且殘留應力分佈較廣。若以兩種銲法加以搭配使用,期可有效的解決並提升整體加工修理的程序,使銲接品質維持於高水準,進而降低機件報廢及待修時間。
This research deals the problems that cracks induced by metal fatigue and structural aging effect, which can’t be repaired by traditional Gas Tungsten Arc Welding (GTAW) and cause the increasing of defect rate. Although some cracks might still be accepted and qualified to field service according to military regulation, nevertheless, some problems, for example brazing and coating area, can’t be overcome by traditional welding technology. In order to lower the defect rate, seeking new processes and decreasing the component defects to keep the cost down are needed. In this study, Hastelloy X superalloy was chosen as the test material, which was performed mechanical tests by adopting Nd-YAG Laser and traditional GTAW processes. Moreover, by the use of OM and SEM, macro- and microstructure were observed that were compared with hardness testing. On the other hand, residual stress after welding was measured by X-ray diffraction. As the research results, traditional welding technology shows better ultimate tensile strength and ductility. For Nd:YAG laser welding, residual stress only exists in the both side of weld (3mm) and drops very quickly; however, higher amplitude and widely spread in the GTAW welding. If combine both technology, the repairing process could be optimized and keep the welding quality in high level in order to lower the defective rate and save time for repairing.
中文摘要I
英文摘要Ⅱ
誌謝Ⅲ
總目錄Ⅳ
圖目錄Ⅵ
表目錄Ⅶ
第一章 緒論 1
第二章 理論背景 3
2.1 雷射光銲接法(Laser beam welding)3
2.2 惰性氣體鎢極銲接5
2.3 超合金熱裂之形成7
2.4 X-ray繞射法量測理論8
第三章 實驗材料與步驟18
3.1 實驗材料及板材之尺寸18
3.2 銲接方式18
3.3 材料銲後性質量測19
3.3.1 金相觀察(Optical Microscope)19
3.3.2 微硬度試驗19
3.3.3 拉伸試驗20
3.3.4 掃描式電子顯微鏡之觀察20
3.3.5 X-ray繞射法量測實驗20
第四章 結果與討論30
4.1 銲接後材料機械性質及金相組織之比較30
4.1.1 OM金相組織觀察30
4.1.2 硬度實驗 31
4.1.3 拉伸試驗結果分析32
4.2 X-ray繞射法殘留應力之量測33
4.2.1 GTAW welding之X-ray繞射法量測33
4.2.2 LASER welding之X-ray繞射法量測34
4.2.3 GTAW及LASER之Residual stress比較34
第五章 結論45
參考文獻46
[1] C. T. Sims and W. C. Hagel (Eds.), The Superalloys, John Wiley & Sons, New York, USA, 1972.
[2] C. T. Sims, N. S. Stoloff and W. C. Hagel (Eds.), Superalloys II, John Wiley & Sons, New York, USA, 1987.
[3] M. J. Donachie and S. J. Donachie, Superalloys A Technical Guide, second ed., ASM International, Materials Park, OH, USA, 2002.
[4] C. A. Blue, R. A. Blue, R. Y. Lin, J.-F. Lei and W. D. Williams, “Joining of Hastelloy X to Inconel 718 using an infrared process,” Journal of Materials Processing Technology, vol. 58, pp. 32-38, 1994.
[5] F. R. N. Nabarro and H. L. de Villiers, The Physics of Creep, Taylor & Francis, London, UK, 1995.
[6] M. E. Kassner and M. T. Pérez-Prado, Fundamentals of Creep in Metals and Alloy, Elsevier, Amsterdam, The Netherlands, 2004.
[7] J.-W. Lee and Y.-C. Kuo, “A study on the microstructure and cyclic oxidation behavior of the pack aluminized Hastelloy X at 1100 °C,” Surface & Coatings Technology, vol. 201, pp. 3867–3871, 2006.
[8] Y. L. Lu, L. J. Chen, G. Y. Wang, M. L. Benson, P. K. Liaw, S. A. Thompson, J. W. Blust, P. F. Browning, A. K. Bhattacharya, J. M. Aurrecoechea and D. L. Klarstrom, “Hold-time effects on low-cycle-fatigue behavior of Hastelloy X superalloy at high temperatures,” In Superalloys 2004, edited by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra and S. Walston, TMS, pp. 241-250, 2004.
[9] J. C. Zhao, M. Larsen and V. Ravikumar, “Phase precipitation and time-temperature-transformation diagram of Hastelloy X,” Materials Science and Engineering, vol. A293, pp. 112-119, 2000.
[10] 陳志鵬編著,銲接學(全華科技圖書股份有限公司),91年7月。
[11] 周長彬、蔡丕椿、郭央諶,銲接學(全華科技圖書股份有限公司),78年。
[12] 王振欽編著,銲接學(高立圖書股份有限公司),86年。
[13] 程仁毅,304L不鏽鋼之惰性氣體鎢棒電弧銲及遮蔽氣體電弧銲銲接件在動態剪切負荷下的塑變行為與破壞特性分析之研究,國立成功大學,機械工程系,碩士班碩士論文,91年6月。
[14] K. Easterling, Introduction to the Physical Metallurgy of Welding, Butterworths, New York, USA, 1983.
[15] ASTM E915-96, “Standard Test Method for X-ray Diffraction Instrumntation for Residual Stress Measurement,” ASTM International.
[16] ASTM E1426-98, “Standard Test Method for Determining the Effective Elastic Parameter for X-ray Diffraction Instrumentation Measurement of Residual Stress,” ASTM International.
[17] K. H. Tseng and C. P. Chou, “The effect of pulsed GTA welding on the residual stress of a stainless steel weldment,” Journal of Materials Processing Technology, vol. 123, pp. 346-353, 2002.
[18] G. Albertini, G. Bruno, B. D. Dunn, F. Fiori, W. Reimers and J. S.Wright, “Comparative neutron and X-ray residual stress measurements on Al-2219 welded plate,” Materials Science and Engineering, vol. A224, pp. 157-165, 1997.
[19] G. A. Webster and R. C. Wimpory, “Non-destructive measurement of residual stress by neutron diffraction,” Journal of Materials Processing Technology, vol. 117, pp. 395-399, 2001.
[20] 汪建民,材料分析,中國材料科學學會,1998。
[21] 莊東漢著,材料破損分析,五南書局,2007。
[22] 許樹恩、吳泰伯著,X光繞射原理及材料結構分析,民全書局,中國材料科學學會,民國85年9月 (修訂版)。
[23] Z. Li, S. L. Gobbi and K. H. Richter, “Autogenous welding of Hastelloy X to Mar-M 247 by laser,” Journal of Materials Processing Technology, vol. 70, pp. 285-292, 1997.
[24] AMS 5536L, Society of Automotive Engineers.
[25] USC 2J-F1042-3-8 WP 050 00, Tail Cone Repair, p. 122.12, c. 22, March 2008.
[26] ASTM E8M-04, “Standard Test Method for Tension Testing of Metallic Materials,” ASTM International.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top