[1] C. T. Sims and W. C. Hagel (Eds.), The Superalloys, John Wiley & Sons, New York, USA, 1972.
[2] C. T. Sims, N. S. Stoloff and W. C. Hagel (Eds.), Superalloys II, John Wiley & Sons, New York, USA, 1987.
[3] M. J. Donachie and S. J. Donachie, Superalloys A Technical Guide, second ed., ASM International, Materials Park, OH, USA, 2002.
[4] C. A. Blue, R. A. Blue, R. Y. Lin, J.-F. Lei and W. D. Williams, “Joining of Hastelloy X to Inconel 718 using an infrared process,” Journal of Materials Processing Technology, vol. 58, pp. 32-38, 1994.
[5] F. R. N. Nabarro and H. L. de Villiers, The Physics of Creep, Taylor & Francis, London, UK, 1995.
[6] M. E. Kassner and M. T. Pérez-Prado, Fundamentals of Creep in Metals and Alloy, Elsevier, Amsterdam, The Netherlands, 2004.
[7] J.-W. Lee and Y.-C. Kuo, “A study on the microstructure and cyclic oxidation behavior of the pack aluminized Hastelloy X at 1100 °C,” Surface & Coatings Technology, vol. 201, pp. 3867–3871, 2006.
[8] Y. L. Lu, L. J. Chen, G. Y. Wang, M. L. Benson, P. K. Liaw, S. A. Thompson, J. W. Blust, P. F. Browning, A. K. Bhattacharya, J. M. Aurrecoechea and D. L. Klarstrom, “Hold-time effects on low-cycle-fatigue behavior of Hastelloy X superalloy at high temperatures,” In Superalloys 2004, edited by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra and S. Walston, TMS, pp. 241-250, 2004.
[9] J. C. Zhao, M. Larsen and V. Ravikumar, “Phase precipitation and time-temperature-transformation diagram of Hastelloy X,” Materials Science and Engineering, vol. A293, pp. 112-119, 2000.
[10] 陳志鵬編著,銲接學(全華科技圖書股份有限公司),91年7月。
[11] 周長彬、蔡丕椿、郭央諶,銲接學(全華科技圖書股份有限公司),78年。
[12] 王振欽編著,銲接學(高立圖書股份有限公司),86年。
[13] 程仁毅,304L不鏽鋼之惰性氣體鎢棒電弧銲及遮蔽氣體電弧銲銲接件在動態剪切負荷下的塑變行為與破壞特性分析之研究,國立成功大學,機械工程系,碩士班碩士論文,91年6月。[14] K. Easterling, Introduction to the Physical Metallurgy of Welding, Butterworths, New York, USA, 1983.
[15] ASTM E915-96, “Standard Test Method for X-ray Diffraction Instrumntation for Residual Stress Measurement,” ASTM International.
[16] ASTM E1426-98, “Standard Test Method for Determining the Effective Elastic Parameter for X-ray Diffraction Instrumentation Measurement of Residual Stress,” ASTM International.
[17] K. H. Tseng and C. P. Chou, “The effect of pulsed GTA welding on the residual stress of a stainless steel weldment,” Journal of Materials Processing Technology, vol. 123, pp. 346-353, 2002.
[18] G. Albertini, G. Bruno, B. D. Dunn, F. Fiori, W. Reimers and J. S.Wright, “Comparative neutron and X-ray residual stress measurements on Al-2219 welded plate,” Materials Science and Engineering, vol. A224, pp. 157-165, 1997.
[19] G. A. Webster and R. C. Wimpory, “Non-destructive measurement of residual stress by neutron diffraction,” Journal of Materials Processing Technology, vol. 117, pp. 395-399, 2001.
[20] 汪建民,材料分析,中國材料科學學會,1998。
[21] 莊東漢著,材料破損分析,五南書局,2007。
[22] 許樹恩、吳泰伯著,X光繞射原理及材料結構分析,民全書局,中國材料科學學會,民國85年9月 (修訂版)。
[23] Z. Li, S. L. Gobbi and K. H. Richter, “Autogenous welding of Hastelloy X to Mar-M 247 by laser,” Journal of Materials Processing Technology, vol. 70, pp. 285-292, 1997.
[24] AMS 5536L, Society of Automotive Engineers.
[25] USC 2J-F1042-3-8 WP 050 00, Tail Cone Repair, p. 122.12, c. 22, March 2008.
[26] ASTM E8M-04, “Standard Test Method for Tension Testing of Metallic Materials,” ASTM International.