跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/13 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱偉元
研究生(外文):Wei-Yuan Chiu
論文名稱:使用差動差分電流傳輸器之萬用二階濾波器設計
論文名稱(外文):Design of Universal Biquad Filters employing Differential Difference Current Conveyors
指導教授:洪君維洪君維引用關係
指導教授(外文):Jiun-Wei Horng
學位類別:博士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:117
中文關鍵詞:主動濾波器萬用二階濾波器電壓模式電流傳輸器
外文關鍵詞:Universal biquadActive filterCurrent conveyorVoltage-mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在同一個線路中能同時得到越多種不同功能的濾波訊號,越可增加線路的實用性並降低成本;傳統上KHN biquad可在同一個線路中同時得到高通、帶通及低通訊號,因此長期持續受到廣大的注意與研究。然而,KHN biquad僅可在同一個線路中同時得到高通、帶通及低通三種濾波訊號,為了得到更多種不同功能的濾波訊號,Universal biquad的設計概念因此被提出。

Universal biquad是一個可在同一個線路中同時得到高通、帶通、低通、帶拒及全通五種濾波器訊號的二階濾波器電路,因其實用性較KHN biquad高,近年來也受到相當的注意與研究。然而,在這些Universal biquad 電路的研究中,皆可發現其元件的使用數量非最精簡且在合成全通濾波訊號時需要使用到阻抗匹配的條件等缺點。

使用差動差分電流傳輸器(DDCC)當作主動元件來設計類比濾波器電路可使所設計出的電路具有較寬的頻寬範圍、較大之動態範圍及較簡單的電路等優點。

有鑑於此,本論文使用DDCC,針對以電壓模式的Universal biquad濾波器做了廣泛的研究與設計,並合成設計出共28種不同架構的一輸入五輸出Universal biquad。這些新型的Universal biquad電路中皆具有高輸入阻抗、使用接地電容器、使用最少被動元件及合成各式濾波器訊號不需使用到阻抗匹配條件等的優點。

在使用H-SPICE模擬軟體並搭配TSMC 0.18μm, level 49 CMOS 製程參數的驗證下,本論文所提出的電路皆得到了符合理論值的模擬結果。


To obtain various filter functions simultaneously in the same circuit topology will increase the usefulness and reduce the cost of the circuit. Traditionally, the KHN biquad can obtain the high-pass, band-pass and low-pass signals in the same circuit topology. So KHN biquads have received much attention and the scholars have researched on this topic for a long time. However, the KHN biquad can only obtain the high-pass, band-pass and low-pass signals. In order to gain more filter signals, the concept of universal biquad is presented.

The universal biquad is a biquadratic filter which can obtain the high-pass, band-pass, low-pass, notch and all-pass signals simultaneously, in the same circuit topology. From the viewpoint of the practicability, the universal biquad is better than the KHN biquad. For this reason, many universal biquad circuits are proposed in the recent years. However, these circuits are not the most simplified and require critical component matching conditions to realize the all-pass signals.

Recently, the Differential Difference Current Conveyor (DDCC) as active elements received great attention due to higher signal bandwidth, wider dynamic range, greater linearity, lower power consumption, and simpler circuitry over the voltage-mode op-amps.

For above reasons, this thesis focuses on the design of the voltage-mode universal biquad filters; twenty-eight new circuits are presented in chapter 4. The proposed universal circuits have the following features: high input impedance, using grounded capacitors, using the minimum passive components and realization of all the standard filter functions, that is, high-pass, band-pass, low-pass, notch, and all-pass filters simultaneously without component matching conditions.

To verify the theoretical analysis, these proposed circuits were simulated using HSPICE with TSMC (Taiwan Semiconductor Manufacturing Company, Ltd.) 0.18μm, level 49 CMOS technology process parameters. All simulation results are coherent with the theoretical analyses.


摘要 I

Abstract III

Contents IV

List of Tables VII

List of Figures VIII

Chapter 1 Introduction 1
1-1 Background and Motivation of Research 1
1-2 Thesis Organization 5
Chapter 2 Multifunction Biquad with One-Input and Four-Output 6
2-1 Introduction 7
2-2 Proposed Circuit 9
2-3 Sensitivities Analysis 11
2-4 Simulation Results 13
2-5 Conclusions 19
Chapter 3 Universal Biquad with Three-Input and One-Output 20
3-1 Introduction 21
3-2 Proposed Circuit 23
3-3 Sensitivities Analysis 26
3-4 Simulation Results 27
3-5 Conclusions 32
Chapter 4 Universal Biquad with One-Input and Five-Output 33
4-1 Introduction 34
4-2 Proposed Circuit 36
4-3 Sensitivities Analysis 65
4-4 Simulation Results 70
4-5 Conclusions 75
Chapter 5 Universal Biquad with Three-Input and Six-Output 76
5-1 Introduction 77
5-2 Proposed Circuit 80
5-3 Sensitivities Analysis 83
5-4 Simulation Results 84
5-5 Conclusions 92
Chapter 6 Conclusions and Suggestions for Future Work 93
6-1 Conclusions 93
6-2 Suggestions for Future Work 95
Reference 96
Appendix Publications 103



List of Tables

Chapter 2
Table 1 Comparison of the proposed circuit with previous circuits 19
Chapter 3
Table 2 Comparison of the proposed circuit with previous circuits 32
Chapter 4
Table 3 Comparison of the proposed circuit with previous circuits 75
Chapter 5
Table 4 Comparison of the proposed circuit with previous circuits 92



List of Figures

Chapter 1
Fig. 1-1 The KHN biquad signal flow graph 2
Chapter 2
Fig. 2-1 The proposed voltage-mode high-pass, band-pass, low-pass and notch biquadratic filter using single DDCC 15
Fig. 2-2 The implementation of DDCC 15
Fig. 2-3 (a) Simulated frequency responses for the high-pass filter (Vout1) of Fig. 2-1 16
Fig. 2-3 (b) Simulated frequency responses for the band-pass filter (Vou2) of Fig. 2-1 16
Fig. 2-3 (c) Simulated frequency responses for the low-pass filter (Vou3) of Fig. 2-1 17
Fig. 2-3 (d) Simulated frequency responses for the notch filter (Vou4) of Fig. 2-1 17
Fig. 2-4 Time-domain input (upper signal) and output signal waveforms to demonstrate the ac dynamic range of the proposed band-pass filter 18
Fig. 2-5 THD analysis results of the proposed band-pass filter 18
Chapter 3
Fig. 3-1 The proposed high-input and low-output impedance voltage- mode universal biquad 24
Fig. 3-2 CMOS realization of the plus-type DDCC 27
Fig. 3-3 (a) Simulated frequency responses for low-pass filter of Fig. 3-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 28
Fig. 3-3 (b) Simulated frequency responses for band-pass filter of Fig. 3-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 29
Fig. 3-3 (c) Simulated frequency responses for notch filter of Fig. 3-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 29
Fig. 3-3 (d) Simulated frequency responses for high-pass filter of Fig. 3-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 30
Fig. 3-3 (e) Simulated frequency responses for all-pass filter of Fig. 3-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 30
Fig. 3-4 Time-domain input (upper signal) and output signal waveforms to demonstrate the ac dynamic range of the proposed band-pass filter 31
Fig. 3-5 THD analysis results of the proposed band-pass filter 31
Chapter 4
Fig. 4-1 The 1st proposed Universal biquad with one-input and five- output 36
Fig. 4-2 The 2nd proposed Universal biquad with one-input and five- output 37
Fig. 4-3 The 3rd proposed Universal biquad with one-input and five- output 38
Fig. 4-4 The 4th proposed Universal biquad with one-input and five- output 39
Fig. 4-5 The 5th proposed Universal biquad with one-input and five- output 40
Fig. 4-6 The 6th proposed Universal biquad with one-input and five- output 41
Fig. 4-7 The 7th proposed Universal biquad with one-input and five- output 42
Fig. 4-8 The 8th proposed Universal biquad with one-input and five- output 43
Fig. 4-9 The 9th proposed Universal biquad with one-input and five- output 44
Fig. 4-10 The 10th proposed Universal biquad with one-input and five- output 45
Fig. 4-11 The 11th proposed Universal biquad with one-input and five- output 46
Fig. 4-12 The 12th proposed Universal biquad with one-input and five- output 47
Fig. 4-13 The 13th proposed Universal biquad with one-input and five- output 48
Fig. 4-14 The 14th proposed Universal biquad with one-input and five- output 49
Fig. 4-15 The 15th proposed Universal biquad with one-input and five- output 50
Fig. 4-16 The 16th proposed Universal biquad with one-input and five- output 51
Fig. 4-17 The 17th proposed Universal biquad with one-input and five- output 52
Fig. 4-18 The 18th proposed Universal biquad with one-input and five- output 53
Fig. 4-19 The 19th proposed Universal biquad with one-input and five- output 54
Fig. 4-20 The 20th proposed Universal biquad with one-input and five- output 55
Fig. 4-21 The 21st proposed Universal biquad with one-input and five- output 56
Fig. 4-22 The 22nd proposed Universal biquad with one-input and five- output 57
Fig. 4-23 The 23rd proposed Universal biquad with one-input and five- output 58
Fig. 4-24 The 24th proposed Universal biquad with one-input and five- output 59
Fig. 4-25 The 25th proposed Universal biquad with one-input and five- output 60
Fig. 4-26 The 26th proposed Universal biquad with one-input and five- output 61
Fig. 4-27 The 27th proposed Universal biquad with one-input and five- output 62
Fig. 4-28 The 28th proposed Universal biquad with one-input and five- output 63
Fig. 4-29 (a) Simulated frequency responses for low-pass filter (Vout1) of Fig. 4-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 71
Fig. 4-29 (b) Simulated frequency responses for band-pass filter (Vout2) of Fig. 4-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 71
Fig. 4-29 (c) Simulated frequency responses for notch filter (Vout3) of Fig. 4-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 72
Fig. 4-29 (d) Simulated frequency responses for high-pass filter (Vout4) of Fig. 4-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 72
Fig. 4-29 (e) Simulated frequency responses for all-pass filter (Vout5) of Fig. 4-1 designed with C1 = C2 = 10 pF and R1 = R2 = 1k 73
Fig. 4-30 Time-domain input (upper signal) and output signal waveforms to demonstrate the ac dynamic range of the proposed band-pass filter 73
Fig. 4-31 THD analysis results of the proposed band-pass filter 74
Chapter 5
Fig. 5-1 The proposed Universal biquad with three-input and six-output 80
Fig. 5-2 (a) Simulated frequency responses for low-pass filter (Vout1) of Fig. 5-1 designed with Vin2 = Vin3 = 0 (grounded), Vin1 = input voltage signal, C1 = C2 = 10 pF and R1 = R2 = R3 = 1k 84
Fig. 5-2 (b) Simulated frequency responses for band-pass filter (Vout2) of Fig. 5-1 designed with Vin2 = Vin3 = 0 (grounded), Vin1 = input voltage signal, C1 = C2 = 10 pF and R1 = R2 = R3 = 1k 85
Fig. 5-2 (c) Simulated frequency responses for notch filter (Vout3) of Fig. 5-1 designed with Vin2 = Vin3 = 0 (grounded), Vin1 = input voltage signal, C1 = C2 = 10 pF and R1 = R2 = R3 = 1k 86
Fig. 5-2 (d) Simulated frequency responses for high-pass filter (Vout4) of Fig. 5-1 designed with Vin2 = Vin3 = 0 (grounded), Vin1 = input voltage signal, C1 = C2 = 10 pF and R1 = R2 = R3 = 1k 86
Fig. 5-2 (e) Simulated frequency responses for inverting band-pass filter (Vout5) of Fig. 5-1 designed with Vin2 = Vin3 = 0 (grounded), Vin1 = input voltage signal, C1 = C2 = 10 pF and R1 = R2 = R3 = 1k 87
Fig. 5-2 (f) Simulated frequency responses for all-pass filter (Vout6) of Fig. 5-1 designed with Vin2 = Vin3 = 0 (grounded), Vin1 = input voltage signal, C1 = C2 = 10 pF and R1 = R2 = R3 = 1k 87
Fig. 5-3 Simulated frequency responses for the all-pass filter (Vout3) of Fig. 5-1 designed with Vin3 = 0 (grounded), Vin1 = Vin2 = input voltage signal, C1 = C2 = 10 pF, and R1 = R2 = R3 = 1 k 89
Fig. 5-4 Simulated frequency responses for the band-pass filter (Vout2) of Fig. 5-1 designed with Vin2 = Vin3 = 0 (grounded); Vin1 = input voltage signal, C1 = C2 = 10 pF, R1 = 5 k and R2 = R3 =0.5 k 89
Fig. 5-5 Time-domain input (upper signal) and output signal waveforms to demonstrate the ac dynamic range of the proposed band-filter (a) Vout2, (b) Vout5 90
Fig. 5-6 THD analysis results of the proposed band-pass filters at Vout2 and Vout5 91
Fig. 5-7 INOISE and ONOISE simulation results of the proposed all-pass filter at Vout6 91
[1]W. Kerwin, L. Huelsman and R. W. Newcomb, State variable synthesis for insensitive integrated circuit transfer function, IEEE Journal of Solid-State Circuits, 2, 87–92, 1967.

[2]W. Y. Chiu and J. W. Horng, High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs, IEEE Transactions on Circuits and Systems Part II: Express Briefs, 54, 649–652, 2007

[3]J. W. Horng, High-input impedance voltage-mode universal biquadratic filter using three plus-type CCIIs, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 48, 996–997, 2001

[4]J. W. Horng, High input impedance voltage-mode universal biquadratic filter with three inputs using DDCCs, Circuits, Systems, and Signal Processing, 27, 553–562, 2008

[5]J. W. Horng, W. Y. Chiu and H. Y. Wei, Voltage-mode highpass, bandpass and lowpass filters using two DDCCs, International Journal of Electronics, 91, 461–464, 2004

[6]M. A. Ibrahim, S. Minaei and H. Kuntman, A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements, AEU International Journal of Electronics and Communications, 59, 311–318, 2005

[7]H. P. Chen, Universal voltage-mode filter using only plus-type DDCCs, Analog Integrated Circuits Signal Processing, 50, 137–139, 2007

[8]H. P. Chen, Single FDCCII-based universal voltage-mode filter, AEU International Journal of Electronics, 63, 713–719, 2009

[9]J. W. Horng, Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs, Analog Integrated Circuits and Signal Processing, 62, 407–413, 2010

[10]J. W. Horng, C. L. Hou, C. M. Chang, W. Y. Chung and H. Y. Wei, Voltage-mode universal biquadratic filters with one input and five outputs using MOCCIIs, Computers and Electrical Engineering, 31, 190–202, 2005

[11]J. W. Horng, C. L Hou, C. M. Chang, H. P. Chou and C. T. Lin, High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors, Circuits, Systems and Signal Processing, 25, 767–777, 2006

[12]J. W. Horng, C. L. Hou, C. M. Chang and W. Y. Chung, Voltage-mode universal biquadratic filters with one input and five outputs, Analog Integrated Circuits and Signal Processing, 47, 73–83, 2006

[13]H. P. Chen, Voltage-mode FDCCII-based universal filters, AEU International Journal of Electronics, 62, 320–323, 2008

[14]S. Minaei and E. Yuce, All-grounded passive elements voltage-mode DVCC-based universal filters, Circuits, Systems, and Signal Processing, 29, 295–309, 2010

[15]H. P. Chen, Versatile universal voltage-mode filter employing DDCCs, AEU International Journal of Electronics, 63, 78–82, 2009

[16]B. Wilson, Recent developments in current conveyor and current-mode circuits, IEE Proceedings-Circuits Devices and Systems, 137, 63–77, 1990

[17]D. Biolek, R. Senani, V. Biolkova and Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals, Radioengineering, 17, 15–32, 2008

[18]W. Chiu, S. I. Liu, H. W. Tsao and J. J. Chen, CMOS differential difference current conveyors and their applications, IEE Proceedings-Circuits Devices and Systems, 143, 91–96, 1996

[19]M. Bhusan and R. W. Newcomb, Grounding of capacitors in integrated circuits, Electronic Letters, 3, 148–149, 1967

[20]S. S. Gupta and R. Senani, Realisation of current-mode SRCOs using all grounded passive elements, Frequenz, 57, 26–37, 2003

[21]M. Banu and Tsividis, Y, Floating voltage-controlled resistors in CMOS technology, Electronic Letters, 18, 678–679,1982

[22]H. O. Elwan, S. A. Mahmoud and A. M. Soliman, CMOS voltage controlled floating resistor, International Journal of. Electronics, 81, 571–576, 1996

[23]E. Sackinger and W. Guggenbuhl, A versatile building block : the CMOS differential difference amplifier, IEEE Journal of Solid-State Circuits, 22, 287–294, 1987

[24]J. W. Horng, J. R. Lay, C. W. Chang and M. H. Lee, High input impedance voltage-mode multifunction filters using plus-type CCIIs, Electronics Letters, 33, 472–473 , 1997

[25]J. W. Horng and M. H. Lee, High input impedance voltage-mode lowpass, bandpass and highpass filter using current-feedback amplifiers, Electronics Letters, 33, 947–948, 1997.

[26]V. Biolkova, Z. Kolka and D. Biolek, Fully balanced voltage differencing buffered amplifier and its applications, Process of the 52nd MWSCAS, 45–48, 2009

[27]M. A. Ibrahim, H. Kuntman, O. Cicekoglu, Single DDCC biquads with high input impedance and minimum number of passive elements, Analog Integrated Circuits and Signal Processing, 43, 71–79, 2005

[28]M. Sagbas, M. Koksal, Voltage-mode three-input single-output multifunction filters employing minimum number of components, Frequenz, 61, 87–93, 2007

[29]H. P. Chen and K. H. Wu, Single DDCC-Based Voltage-Mode Multifunction Filter, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E90-A, 2029–2031, 2007

[30]E. Yuce, A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters, IEEE Transactions on Circuits and Systems I: Regular Papers, 55, 266–275, 2008

[31]E. Yuce, Voltage-mode multifunction filters employing a single DVCC and grounded capacitors, IEEE Transactions on Instrumentation and Measurement, 58, 2216–2221, 2009

[32]H. O. Elwan and A. M. Soliman, Novel CMOS differential voltage current conveyor and its applications, IEE Proceedings G-Circuits Devices and Systems, 144, 195–200, 1997

[33]A. Fabre, F. Dayoub, L. Duruisseau and M. Kamoun, High-input impedance insensitive second-order filters implemented from current conveyors, IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications, 41, 918–921, 1994

[34]S. Ozoguz and E. O. Gunes, Universal filter with three inputs using CCII+s, Electronics Letters, 32, 134–2135, 1996

[35]C. M. Chang and M. S. Lee, Comment: Universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower, Electronics Letters, 31, 353–353, 1995

[36]J. W. Horng, C. C. Tsai, and M. H. Lee, Novel universal voltage-mode biquad filter with three inputs and one output using only two current conveyors, International Journal of Electronics, 80, 543–546, 1996

[37]J. W. Horng, M. H. Lee, H. C. Cheng, and C. W. Chang, New CCIIb-based voltage-mode universal biquadratic filter, International Journal of Electronics, 82, 151–155, 1997

[38]S. I. Liu and J. L. Lee, Voltage-mode universal filters using two current conveyors, International Journal of Electronics, 82, 145–149, 1997

[39]C. M. Chang, Multifunction biquadratic filters using current conveyors, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 44, 956–958, 1997

[40]C. M. Chang and S. H. Tu, Universal voltage-mode filter with four inputs and one output using two CCII+s, International Journal of Electronics, 86, 305–309, 1999

[41]J. W. Horng, High-input impedance voltage-mode universal biquadratic filters with three inputs using plus-type CCIIs, International Journal of Electronics, 91, 465–475, 2004

[42]M. T. Abuelma’atti and H.A. Al-Zaher, New universal filter with one input and five outputs using current-feedback amplifiers, Analog Integrated Circuits Signal Processing, 16, 239–244, 1998

[43]A. A. El-Adawy, A. M. Soliman and H. O. Elwan, A novel fully differential current conveyor and applications for analog VLSI, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47, 306–313, 2000

[44]J. W. Horng, C. L. Hou and C. M. Chang, Multi-input differential current conveyor, CMOS realisation and application, IET Circuits, Devices and Systems, 2, 469–475, 2008

[45]S. S. Gupta, R. Senani, , Realisation of current-mode SRCOs using all grounded passive elements, Frequenz, 57, 26–37, 2003

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 許和鈞、鍾惠民、李宗政、葉立仁(2004),「中華郵政公司儲匯部門改制為金融機構競爭優勢分析」,創新與管理,第一卷第一期,21-41頁。
2. 卓翠月(2004),「中華郵政公司跨業經營之研究」,國立臺中技術學院學報,第五卷,193-211頁。
3. 林淑馨(2002),「郵政事業改革對普及服務供給影響之研究」,行政暨政策學報,第三十五期,71-101頁。
4. 曾真真(2007),「應用資料包絡法及Malmquist生產力指數衡量壽險業之經營效率:利害關係人觀點」,中華管理評論國際學報,第十卷第一期,1-20頁。
5. 周錦燕(2007),「價值工程在郵政經營之應用與前瞻」,價值管理,第十二期, 31-39頁。
6. 邱垂昌、林惠美(2007),「水價公平合理與否?以台灣省自來水股份有限公司成本動因與營運效率分析」,公平交易季刊,第十五卷第三期,105-150頁。
7. 吳學良、鮑慧文(2006),「公營事業民營化政策再檢驗:相對績效衡量與績效變化之影響因素」,經濟情勢暨評論,第二卷第十二期,18-41頁。
8. 李彩鑾、藍淑貞、黃淑端、鍾甯(2002),「因應郵政改制,集郵業務未來經營方向之研究」,郵政研究,第八十六期, 46-86頁。
9. 沈中華、林智勇(2009),「銀行民營化的績效表現--配對理論的應用」,經濟論文,第三卷第三十七期,369-405頁。
10. 江淑貞、吳桂燕(2008),「決定民營化企業績效提升因素之分析」,輔仁管理評論,第二卷第十五期,1-21頁。
11. 王媛慧、李文福、翁竹君(2007),「台灣國際觀光旅館業生產力與效率分析:隨機邊界距離函數之應用」,經濟論文叢刊,第一卷第三十五期,55–86頁。
12. 黃美珠、陳玉麟(2009),「薪酬與生產技術效率的解釋:性別與層級在台灣會計師產業扮演的角色」,當代會計,第十卷第二期,163-188頁。
13. 蔡柳卿、楊怡芳(2007),「台灣銀行業服務品質、營運效率與獲利性之相關性研究」,當代會計,第八卷第一期,51-84頁。
14. 賴錦玟、楊榮欽、張碧犁、朱潔貞(1998),「郵政業務實施作業基礎成本制度之研究」,郵政研究,第六十八期,20-44頁。
15. 蘇英俊(2001),「郵政業務多角化經營之探討」,郵政研究,第八十期,42-51頁。