跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳靜宜
研究生(外文):Ching-yi Wu
論文名稱:以科技接受模式、知覺娛樂性與從眾行為探討虛擬社群的使用意圖─以Facebook為例
論文名稱(外文):TAM, Perceived Playfulness and Conformity toward Behavior Intention of Virtual Community: An Empirical Study
指導教授:洪秀婉洪秀婉引用關係陳春希陳春希引用關係
指導教授(外文):Shiu-wan HungChun-hsi Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:71
中文關鍵詞:資訊性影響知覺娛樂性科技接受模式虛擬社群規範性影響
外文關鍵詞:Virtual communityTAMPerceived playfulnessNormative influenceInformational influence
相關次數:
  • 被引用被引用:35
  • 點閱點閱:2989
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
由於虛擬社群的蓬勃發展,使得人們的溝通不再侷限於實體生活當中,而不受地理限制進一步延伸至網際網路上,人與人之間的無形情感在虛擬世界中真實的呈現出來。隨著虛擬社群的多元發展,社群網絡的發展有可能是從實際生活中延伸至網際網絡上,與過去先在虛擬社群中建立關係後才有機會延伸至真實世界中的情況大不相同。另外,虛擬社群不再像過往只提供單一種功能,而是已能同時滿足使用者溝通、娛樂、資訊獲取等多種面向的需求,導致若使用科技接受模式單一理論來探究虛擬社群的使用意圖,將產生解釋力不足的現象。故依據虛擬社群互動與娛樂的特性,以科技接受模式為研究基礎,加入從眾行為因子與知覺娛樂性兩種因素,探討影響虛擬社群使用意圖的關鍵因素為何。本研究以目前相當熱門的虛擬社群Facebook其使用者為研究對象,採用問卷方式與結構方程模式進行假說驗證。本研究結果發現知覺有用性、知覺易用性與知覺娛樂性會對虛擬社群的使用意圖產生影響,而透過從眾因素當中的資訊性影響也會間接增加虛擬社群的使用意圖,但從眾因素當中的另一規範性影響則不會對使用意圖產生任何作用。
With the rapid development of virtual community, the communication of people is no longer limited in the real life, and further to the network without restricted by geography. The interpersonal intangible sense of love comes true and shown on the virtual world. Along with the variety of virtual communities the development of community that people probably built the relationships first on the Internet in the past. But nowadays, people built the relationships first in the real world.
Virtual community is multi-function, and also provides the need of communication, entertainment, information etc. If only use the single theory of TAM to find out the behavior intention of virtual community, lack of explanatory power will be a problem. So according to the characteristic of interaction and entertainment, based on the TAM, together with conformity and perceived playfulness, find out the key reason to influence the behavior intention of virtual community. A structural equation modeling (SEM) approach was employed to analyze respondents’ intention of virtual community Facebook.
As the result of this study, the perceived usefulness, perceived ease of use and perceived playfulness could influence the behavior intention of virtual community, the informational influence also plays an role in behavior intention of virtual community, but normative influence which in the conformity cannot working in the behavior intention of virtual community.
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究問題與目的 4
第三節 研究流程 5
第二章 文獻探討 6
第一節 科技接受模式 6
第二節 從眾行為 13
第三節 虛擬社群與科技接受模式、知覺娛樂性、從眾行為 16
第三章 研究方法 18
第一節 研究架構 18
第二節 研究假設 19
第三節 變數之定義與衡量 23
第四節 研究範圍與對象 28
第四章 研究結果 32
第一節 敘述性統計分析 32
第二節 信度與效度分析 38
第三節 相關分析 44
第四節 整體模式配適分析 45
第五節 研究假說驗證分析 47
第五章 實證結論與建議 51
第一節 研究結論 51
第二節 管理意涵 54
第三節 研究限制與建議 57
參考文獻 59
附錄一 本研究問卷 69

圖目錄
圖1-1 研究流程 5
圖2-1 科技接受模型 7
圖3-1 研究架構圖 18
圖4-1 驗證性因素分析模式架構 39
圖4-2 本研究之結構方程式模型 48

表目錄
表2-1 TAM外部變數相關研究 8
表2-2 知覺娛樂性相關研究 12
表3-1 知覺有用性之定義與衡量問題 23
表3-2 知覺易用性之定義與衡量問題 24
表3-3 知覺娛樂性之定義與衡量問題 25
表3-4 規範性之定義與衡量問題 25
表3-5 資訊性之定義與衡量問題 26
表3-6 態度之定義與衡量問題 27
表3-7 使用意圖之定義與衡量問題 27
表4-1 樣本基本資料整理 33
表4-2 研究變項之敘述性統計分析表 36
表4-3 個別項目之信度分析表 40
表4-4 內部一致信度分析彙整表 41
表4-5 構面相關係數與平均變異萃取平方根 43
表4-6 研究構面相關矩陣 44
表4-7 整體模型配適度指標衡量結果 45
表4-8 假說檢定結果列表 47
表4-9 本研究模式之各項效果彙整表 49
參考文獻
一、中文文獻
1.吳明隆(2007a),SPSS操作與應用:變異數分析實務,台北,五南。
2.吳明隆(2007b),結構方程模式—AMOS的操作與應用,台北,五南。
3.吳萬益(2008),企業研究方法,台北,華泰文化。
4.林建煌(2009),消費者行為,台北,華泰文化。
5.林震岩(2006),多變量分析:SPSS的操作與應用,台北,智勝。
6.邱皓政(2003),結構方程模式:LISREL 的理論、技術與應用,台北,雙葉書廊。
7.徐文怡(2003),資訊性與規範性影響下從眾行為之研究,國立嘉義大學行銷與流通管
理研究所碩士論文。
8.許晉龍(2004),線上遊戲使用者行為研究,國立台灣科技大學資訊管理研究所博士論
文。
9.陳佩瑜(2006),知覺娛樂性及情境因素對行動遊戲使用意願之影響,國立中山大學傳
播管理研究所碩士論文。
10.陳順宇(2007),結構方程模式—AMOS操作,台北,心理出版。
11.黃俊英、林震岩(1994),SAS精析與實例,台北,華泰。
12.盧希鵬(2003),虛擬社群接受模式之研究,行政院國家科學委員會專題研究計畫報
告書。
二、英文文獻
1. Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and
usage of information technology: A replication. MIS Quarterly, 16(2), 227-247.
2. Adler, P. R., & Christopher, J. A. (1999). Internet community primer overview and business opportunities. Harper Collins Publishing Inc.
3. Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision Sciences, 128(2), 557-582.
4. Agarwal, R., & Prasad, J. (1999). Are individual differences Germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-392.
5. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
6. Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
7. Allen, V. L. (1965). Situational Factors, in Advances in Experimental and Social Psychology, Vol 2, ed. Leonard Berkowitz. New York, NY: Academic Press, 133-175.
8. Asch, S. E. (1951). Effects of group pressure upon the modification and distortion of judgements. Journal of Marketing Research, 16, 391-400.
9. Asch, S. E. (1956). Studies of independence and conformity: A minority of one against a unanimous majority. Psychological Monographs, 70(9), 1-70.
10. Assael, H., (2004). Consumer Behavior: A Strategic Approach, Boston: Houghton Mifflin.
11. Atkinson, M. A., & Kydd, C. (1997). Individual characteristics associated with world wide web use: An empirical study of playfulness and motivation. Data Base for Advances in Information Systems, 28(2), 53-62.

12. Bagozzi, R. P. (1982). A field investigation of causal relations among cognitions, affect, intentions, and behavior. Journal of Marketing, 19(4), 562-583.
13. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16, 74-94.
14. Bakos, Y. J. (1997). Reducing buyer search costs: Implications for electronic marketplaces. Management Science, 43(12), 1676-1692.
15. Barnett, L. A. (1990). Playfulness: Definition, design, and measurement. Play & Culture, 3(4), 319-336.
16. Bearden, W. O., & Etzel, M. J. (1982). Reference group influence on product and brand purchase decisions. Journal of Consumer Research, 9(2), 183-194.
17. Bearden, W. O., & Rose, R. L. (1990). Attention to social comparison information: An individual difference factor affecting consumer conformity. Journal of Consumer Research, , 461-471.
18. Bearden, W. O., Netemeyer, R. G., & Teel, J. E. (1989). Measurement of consumer susceptibility to interpersonal influence. Journal of Consumer Research, 15(4), 473-481.
19. Burnkrant, R. E., & Cousineau, A. (1975). Informational and normative social influence in buyer behavior. Journal of Consumer Research, 2(3), 206-215.
20. Carver, C. (1999). Building a virtual community for a tele-learning environment. IEEE Communications Magazine, 37(3), 114-118.
21. Chau, P. Y. K. (1996b). An empirical assessment of a modified technology acceptance model. Journal of Management Information Systems, 13(2), 185-204.
22. Chaudhury, A., Mallick, D. N., & Rao, H. R. (2001). Web channel in e-commerce. Association For Computing Machinery, 44(1), 99-104.


23.Cheung, C. M. K., & Lee, M. K. O. (2009). Understanding the sustainability of a virtual community: Model development and empirical test. Journal of Information Science, 35(3), 279-298.
24. Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. Jossey-Bass San Francisco.
25. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
26. Davis, F.D., Bagozzi, R.P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Psychology, 22, 1111-1132.
27. Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. Journal of Abnormal and Social Psychology, 51(3), 629-636.
28. Dishaw, M. T., & Strong D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information and Management, 36(1), 9-21.
29. Eighmey, J., & McCord, L. (1998). Adding value in the information age: Uses and gratifications of sites on the world wide web. Journal of Business Research, 41(3), 187-194.
30. Festinger, L. (1953). An analysis of Compliant Behavior, in Group Relations at the Crossroads, eds. M. Sherif & M. O. Wilson, New York, NY: Harper, 232-256.
31. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. MA: Addison-Wesley.
32. French, J. R. P., & Raven, B. (1959). The bases of social power. D. Cartwrright, ed.Studies in Social Power. Institute for Socail Research, Ann Arbor, MI. 150-167.
33. Gefen, D., & Straub, D. W. (1997). Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Quarterly, 21(4), 389-400.
34. Granitz, Z. A., & Ward, J. C. (1996). Virtual community: A sociocognitive analysis. Advance in Consumer Research, 23, 61-166.
35. Granitz, Z. A., & Ward, J. C. (1996). Virtual community: A sociocognitive analysis. Advance in Consumer Research, 23, 61-166.
36. Granovetter, M. (1985). Economic Action and Social Structure: The Problem of Embeddedness. American Journal of Sociology, 91(3), 481-510.
37. Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management, 44(3), 276-286.
38. Hagel III, J., & Armstrong, A. G. (1996). The real value of on-line communities. Harvard Business Review, 74(3), 134-140.
39. Hagel III, J., & Armstrong, A. G. (1997). Net gain: Expanding markets through virtual communities. Boston, MA: Harvard Business School Press.
40. Hair, J. F. Jr., Anderson, R. E., Tatham, R. L. & Black, W. C. (1992). Multivariate data analysis with reading,3rd ed., New York: Macmillan Publising Company.
41. Hair, J. R., Anderson, R. E., Tatham, R. L., & Black, W.C. (1998). Multivariate Data Analysis, 5th ed., Macmillan, New York.
42. Hasan, B. (2006). Delineating the effects of general and system-specific computer self-efficacy beliefs on IS acceptance. Information & Management, 43(5), 565-571.
43. Heijden, H. V. D. (2003). Factors influencing the usage of websites: the case of a generic portal in the Netherlands. Information & Management, 40(6), 541–549.
44. Henderson, R., & Divett, M. J. (2003). Perceived usefulness, ease of use and electronic supermarket use. International Journal of Human-Computer Studies, 59(3), 383-395.
45. Hendrickson, A. R., & Collins, M. R. (1996). An assessment of structure and causation of IS usage. The Database for Advances in Information Systems, 27(2), 61-67.
46. Holloway, S. L., & Valentine, G. (2003). Cyberkids: children in the information age. London & New York: Routledge Falmer.

47. Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? an extended TAM with social influences and flow experience. Information & Management, 41(7), 853-868.
48. Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega : The International Journal of Management Science , 23(6), 587-605.
49. Igbaria, M., Iivari, J., & Maragahh, H. (1995). Why do individuals use computer technology? A finnish case study. Information & Management, 29(5), 227-238.
50. Jones, Q., & Rafaeli, S. (2000). Time to split, virtually: Discourse architecture and comminuty building as means to creating vibrant virtual metropolises. International Journal of Electronic Commerce, 10(4), 214-223.
51. Kannan, P., Chang, A. M., & Whinston, A. B. (1998). Marketing information on the I-way: Data junkyard or information gold mine? Communications of the ACM, 41(3), 35-43.
52. Karahanna, E., & Straub, D. W. (1999). The psychological origins of perceived usefulness and ease-of-use. Information & Management, 35(4),
53. Keeney, R. L. (1999). The value of internet commerce to the customer. Management Science, , 533-542.
54. Kelman, H. C. (1961). Processes of Opinion Change. Public Opinion Quarterly, 25, 57-78.
55. Kim, B. G., Park, S. C., & Lee, K. J. (2007). A structural equation modeling of the internet acceptance in Korea. Electronic Commerce Research and Applications, 6, 425-432.
56. Kline, R. B. (2005). Principles and practice of structural equation modeling. NY: Guilford Press.
57. Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223.
58. Lascu, D. N., & Zinkhan, G. (1995). Consumer conformity: Review and applications for marketing theory and practice. Journal of Marketing Theory and Practice, 7(3), 1-12.
59. Lascu, D. N., Bearden, W. O., & Rose, R. L. (1995). Norm extremity and interpersonal influences on consumer conformity. Journal of Business Research, 32(3), 201-212.
60. Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the world wide web. Decision Support Systems, 29(3), 269-282.
61. Lennox, R. D., & Wolfe, R. N. (1984). Revision of the self-monitoring scale. Journal of Personality and Social Psychology, 46(6), 1349-1364.
62. Liao, S., Shao, Y. P., Wang, H., & Chen, A. (1999). The adoption of virtual banking: An empirical study. International Journal of Information Management, 19, 63-74.
63. Lieberman, J. N. (1977). Playfulness: Its relationship to imagination and creativity. Academic Press New York.
64. Lin, J. C. C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management, 20, 197-208.
65. Liu, C., & Arnett, K. P. (2000). Exploring the factors associated with web site success in the context of electronic commerce. Information & Management, 38(1), 23-33.
66. Lynch, J. G., & Ariely, D. (2000). Wine online: Search costs affect competition on price, quality, and distribution. Marketing Science, 19(1), 83-103.
67. Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. Cognitive Science, 5(4), 333-369.
68. Miniard, P. W., & Cohen, J. B. (1983). Modeling personal and normative influences on behavior. Journal of Consumer Research, 10(2), 169-180.
69. Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38(4), 217–230.
70. Morris, M., & Dillon, A. (1997). How user perceptions influence software use. IEEE Software, 14(4), 58-65.

71. Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing Science, 19(1), 22-42.
72. Nunnally, J. C. (1978). Psychometric theory, 2nd ed., New York: McGraw-Hill.
73. Park, C. W., & Lessig, V. P. (1977). Students and housewives: Differences in susceptibility to reference group influence. Journal of Consumer Research, 4(2), 102-110.
74. Peterson, G. W., Rollins, B. C., & Thomas, D. L. (1985). Parental influence and adolescent conformity: Compliance and internalization. Youth & Society, 16(4), 397-420.
75. Pfeffer, J. (1982). Organizations and Organization Theory. Pitman, Marshfield, MA.
76. Rheingold, H. (1993). Virtual community: homesteading on the electronic frontier. Addison-Wesley.
77. Romm, C., Pliskin, N., & Clarke, R. (1997). Virtual communities and society: Toward an integrative three phase model. International Journal of Information Management, 17(4), 261-270.
78. Ross, L., Bierbrauer, G., & Hoffman, S. (1976). The role of attribution processes in conformity and dissent: Revisiting the asch situation. American Psychologist, 31(2), 148-157.
79. Ryan, M. J. (1982). Behavioral intention formation: The interdependency of attitudinal and social influence variables. Journal of Consumer Research, 9(3), 263-278.
80. Schmidt, J. B., & Spreng, R. A. (1996). A proposed model of external consumer information search. Journal of the Academy of Marketing Science, 24(3), 246-256.
81. Secord, P. F., & Backman, C. W. (1974). Social Psychology, 2nd ed., McGraw Hill, Kogkusha, Tokyo.
82. Sheizaf, R. (1986). The electronic bulletin board: A computer-driven mass medium. Computer and the Social Sciences, 2(3), 123-136.

83. Soong, M. H . B., Chan, H. C., Chua, B. C., & Loh, K. F. (2001). Critical success factors for on-line course resources. Computers & Education, 36, 101–120.
84. Straub, D., Limayem, M., & Karahanna-Evaristo, E. (1995). Measuring system usage: Implications for IS theory testing. Management Science, 41(8), 1328-1342.
85. Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85-92.
86. Tabachnica, B. G., & Fidell, L. S. (2007). Using Multivariate Statistics, 4th ed., Needham Heights, MA: Allyn and Bacon.
87. Taylor, S., & Todd, P. (1995). Assessing IT usage: the role of prior experience. MIS Quarterly, 19(4), 561-570.
88. Teo, H. H., Chan, H. C., Wei, K. K., & Zhang, Z. (2003). Evaluating information accessibility and community adaptivity features for sustaining virtual learning communities. International Journal of Human-Computer Studies, 59(5), 671-697.
89. Teo, T. S. H., Lim, V. K. G., & Lai, R. Y. C. (1999). Intrinsic and extrinsic motivation in internet usage. Omega : The International Journal of Management Science, 27(1), 25-37.
90. Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.
91. Triandis, H. C. (1971). Attitude and Attitude Change, Wiley, New York.
92. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
93. Warshaw, P. R. (1980). A new model for predicting behavioral intentions: An alternative to fishbein. Journal of Marketing Research, 17(2), 153-172.
94. Webster, J., & Martocchio, J. J. (1992). Microcomputer playfulness:Development of a measure with workplace implications. MIS Quarterly, 16(2), 201-226.

95. Webster, J., Heian, J. B. & Michelman, J. E. (1990). Computer training and computer anxiety in the educational process: an experimental analysis, in Proceedings of the Eleventh International Conference on Information System, Copenhagen, Denmark, 171-182.
96. Wilkie, W. L. (1994). Consumer Behavior, 3rd ed., New York: John Wiley and Sons Inc.
97. Worsley, P. (1987). Community and urban life. New Modern Sociology Readings, London: Penguin Books.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top