跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王柏智
研究生(外文):Bo-zhi Wang
論文名稱:多孔質氣靜壓軸承之性能模擬與實驗研究
論文名稱(外文):Performance Simulation and Experimental Study of Porous Media Aerostatic Bearing
指導教授:林顯群林顯群引用關係
指導教授(外文):Sheam-Chyun Lin
口試委員:林顯群
口試委員(外文):Sheam-Chyun Lin
口試日期:2014-06-12
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:150
中文關鍵詞:氣靜壓軸承多孔質
外文關鍵詞:AerostaticBearingPorous media
相關次數:
  • 被引用被引用:6
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
氣靜壓軸承的應用範圍十分廣泛,包括工具母機、半導體、平面顯示器等產業,是精密機械核心基礎技術,因此顯得其相當之重要,所以本研究針對多孔質氣靜壓主軸模組的頸軸承與支撐床台之平面軸承進行探討;以計算流力軟體模擬觀察軸承氣膜內之壓力分布,並深入分析氣靜壓軸承各項設計參數,並探討其與軸承之承載能力和剛性特性之相互關係,最後結果以多孔質氣靜壓平面軸承的實驗驗證之。
在多孔質氣靜壓平面軸承方面,藉由實驗與數值模擬結果比較可知,兩者之間的誤差不超過10%,且整體趨勢也相同。而在平面軸承多孔質材料幾何變更之模擬結果顯示,多孔質材料之面積與平面軸承之承載能力成正比關係,且多孔質材料之厚度越薄,則其平面軸承之承載能力越大;而當平面軸承以合理的穩定速度或變動之加減速移動時,並不會對其承載能力有明顯之影響。
至於多孔質氣靜壓軸頸軸承方面,單排多孔質氣靜壓軸頸軸承之模擬結果顯示,在各式多孔質氣靜壓軸頸軸承中,以局部式多孔質氣靜壓軸頸軸承效率較佳;且當主軸轉數提高時,受到動壓效應之影響甚大;而當主軸有偏心時,主軸表面之壓力分布明顯不同於無偏心的壓力分布,同時雙排局部式多孔質氣靜壓軸頸軸承之模擬結果顯示,當柱塞直徑由5 mm增加到10 mm時,雖然10 mm直徑之柱塞供氣面積較大,但主軸表面平均壓力未升反降,且當主軸有偏心率時,雙排局部式多孔質氣靜壓軸頸軸承相較於單排之剛性提升了數倍。
This study investigates the performances of the porous media aerostatic plane and journal bearings via numerical simulation. Based on the finite volume method and the pressure-velocity coupling SIMPLE scheme, this work utilizes the CFD software Fluent to solve the compressible three dimensional Navier-Stokes equations to calculate the pressure of the flow field inside the bearings. The effects of the size of porous medium, the bearing gap, the eccentric ratio, and the rotational speed of the spindle on the characteristics of bearing such as the pressure distribution, the load carrying capacity, and the stiffness are examined.
At first, the reliability of CFD software is validated via a comparison between numerical and experimental result of the porous media aerostatic plane bearing. The computed results of plane bearing reveal that, when the plane bearing gap within specific magnitudes, the percent differences between the numerical and experimental data are less than 10%. The load capacity of the plane bearing varies with the bearing gap in a trend which can be seen both in the numerical and the experimental results. It confirms the validity of the numerical model and the steady state simulation approach used in the porous media aerostatic bearing. Furthermore, from the analyses focus on some design parameters, it is found that reasonable steady velocity or dramatic changes velocity does not influence the load carrying capacity of the bearing; the load capacity will decrease if the thickness of the porous material increases and load capacity is proportional to the area of porous material.
The calculated results of single rank journal bearing show that, when the spindle rotated at high speed, the effect of the dynamic pressure becomes dominant, while the effect of the static pressure become insignificant. Among the three types of journal bearings under investigation, the partially porous aerostatic journal bearing exhibits the highest ratio of output pressure to air volume flow rate. It indicates that, in terms of operational efficiency, the partially porous aerostatic journal bearing is superior to the fully porous aerostatic journal bearing. Furthermore, from the results of the double rank porous aerostatic journal bearing, it is found that the trend of double rank and single rank does not make much difference, except the double rank porous aerostatic journal bearings have larger the rigidity and spindle surface average pressure.
摘要
ABSTRACT
致謝
圖索引
表索引
第一章 緒論
1.1 前言
1.2 文獻回顧
1.2.1 多孔質在氣靜壓平面軸承之應用
1.2.2 多孔質在氣靜壓軸頸軸承之應用
1.3 研究動機與方法
第二章 多孔質氣靜壓軸承設計
2.1 氣靜壓軸平面軸承之動作原理
2.2 氣靜壓軸頸軸承之動作原理
2.3 氣靜壓軸承節流器之型式
2.4 多孔質材料
2.5 多孔質氣靜壓軸承
2.6 多孔質氣靜壓軸承解析解數學模型
2.6.1 多孔質材料內壓力分布之推導
2.6.2 多孔質氣靜壓平面軸承軸承間隙內壓力分布之推導
2.6.3 局部多孔質氣體靜壓軸頸軸承間隙內壓力分布之推導
第三章 數值方法
3.1 統御方程式
3.2 數值計算理論
3.2.1 離散化方式
3.2.2 壓力與速度耦合的處理
3.2.3 數值求解流程
3.3 紊流模式
3.4 壁面函數
3.5 邊界條件
3.6 網格獨立性驗證
第四章 實驗設備
4.1 多孔質材料孔隙率檢測
4.2 流阻實驗
4.3 氣靜壓平面軸承承載性能實驗
第五章 數值模擬與實驗結果
5.1 數值模擬與實驗驗證
5.2 多孔質氣靜壓平面軸承數值模擬
5.3 多孔質氣靜壓軸頸軸承數值模擬
第六章 結論與建議
6.1 結論
6.1.1 多孔質氣靜壓平面軸承數值模擬
6.1.2 多孔質氣靜壓軸頸軸承數值模擬
6.2 建議
參考文獻
[1]歐陽渭城,靜壓軸承-設計與應用,機械技術出版社,1998。
[2]十合晉一,氣體軸承從設計到製造,復漢出版社,1985。
[3]劉育華,靜壓氣體潤滑,哈爾賓工業大學出版社,1990。
[4]趙惠英,田世傑,蔣莊德,「高精度氣體靜壓軸承剛度分析」,製造技術與機床,第11期,21-23頁,2003。
[5]盧澤生,于雪梅,「基於分形理論多孔質石墨滲透率的研究」,製造技術與機床,第7期, 29-31頁,2006。
[6]Y. Tian, “Static Study of the Porous Bearings by the Simplified Finite Element Analysis,” Wear, Vol. 218, No. 2, pp. 203-209, 1998.
[7]New way Air Bearings web site, www.newwayairbearings.com.
[8]J. R. Lin and C. C. Hwang, “Hop Bifurcation to a Short Porous Journal Bearing System Using the Brinkman model: Weakly Nonlinear Stability,” Tribology International, Vol. 35, No. 3, pp. 75-84, 2002.
[9]T. S. Luong, W. Potze, J. B. Post, R. A. J. Van Ostayen, A. Van Beek, “Numerical and Experimental Analysis of Aerostatic Thrust Bearings with Porous Restrictors,” Tribology International, Vol. 37, No. 10, pp. 825-832, 2004.
[10]Willis, R. Rev, “On the Pressure Produced on a Flat Plate when Opposed to a Stream of Air Issuing from an Orifice in a Plane Surface”, Trans. Cambridge Phil. Soc, Vol. 3, Part 1, pp. 121-140, 1828.
[11]G.A. Hirn, “Sur les Pricipaux Phenomenes qui Presentent les Frottement Mediats”, Bull. Soc. Ind. Mulhous, Vol. 26, No. 129, 1854.
[12]O. Reynolds, “On Theory of Lubrication and its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil”, Phil. Trans. R. Soc. A., Vol177, 1886.
[13]G. S. Beavers and D. D. Joseph, “Boundary Conditions at a Naturally Permeable Wall”, Journal of Fluid Mechanics, Vol. 30, No. 1, pp. 197-207, 1967.
[14]J. Prakash and S. K. Vij, “Axially Undefined Porous Journal Bearings Considering Cavitation”, Wear, Vol. 22, pp. 1-14, 1972.
[15]J. Prakash and S. K. Vij, “Effect of Velocity Slip in Axially Undefined Porous Bearings”, Wear, Vol. 38, pp. 245-263, 1976.
[16]K. C. Singh and N. S. Rao, “Analysis of Aerostatic Porous Annular Thrust Bearings with Tilt”, Wear, Vol. 80, pp. 291-299, 1982.
[17]K. C. Singh and N. S. Raob, “Static Characteristics of Aerostatic Porous Rectangular Thrust Bearings”, Wear, Vol. 77, pp. 229-236, 1982.
[18]K. C. Singh, N. S. Rao and B. C. Majumdar, “Effect of Velocity Slip on the Performance of Aerostatic Porous Thrust Bearings with Uniform Film Thickness”, Wear, Vol. 88, pp. 323-333, 1983.
[19]K. C. Singh, N. S. Rao, and B. C. Majumdar, “Effects of Velocity Slip, Anisotropy and Tilt on the Steady State Performance of Aerostatic Porous Annular Thrust Bearings”, Wear, Vol. 97, pp. 51-63, 1984.
[20]Y. B. P. Kwan and J. Corbett, “A Simplified Method for the Correction of Velocity Slip and Inertia Effects in Porous Aerostatic Thrust Bearings”, Tribology International, Vol. 31, No. 12, pp. 779-786, 1998.
[21]T. S. Luong, W. Potze, J. B. Post, R. A. J. van Ostayen, and A. V. Beek, “Numerical and Experimental Analysis of Aerostatic Thrust Bearings with Porous Restrictors”, Tribology International Vol. 37, pp. 825-832, 2004.
[22]J. S. Plante, J. Vogan, E. A. Tarek, and A. H. Slocum, “A Design Model for Circular Porous Air Bearings using the 1D Generalized Flow Method”, Precision Engineering, Vol. 29, pp. 336-346, 2005.
[23]D. Z. Wu and J. Z. Tao, “Analysis on the Static Performance of Porous Graphite Aerostatic Thrust Bearings”, International Conference on Computer Engineering and Technology, Vol. 5, pp. 112-115, 2010.
[24]陳育斌,氣體靜壓軸承動態性能分析與實驗研究,大葉大學機械工程研究所碩士論文,1998。
[25]Chen, M.F. Chen, S.F. and Wang Y.S., “Performance Analysis and Experimental Study of the Aerostatic Bearing with Grooves” ,The 16th National Conference on mechanical Engineering (in Chinese), Taiwan, 1999.
[26]王彥欣、陳明飛,氣靜壓主軸只推軸承設計與性能分析,中國機械工程學會,第十七屆全國學術研討會論文集,2000。
[27]林育廷、陳明飛,具X型配流槽氣勁壓軸承性能分析與應用,中國機械工程學會,第十七屆全國學術研討會論文集,2000。
[28]王彥欣,氣靜壓主軸止推軸承之動壓效應分析與設計,彰化師範大學工業教育研究所碩士論文,2000。
[29]B.C. Majumdar, “Analysis of externally pressurized porous gas journal bearings-2”, Wear, Vol. 33, No. 1, pp. 37-43, 1975.
[30]B.C. Majumdar, “Whirl instability of externally pressurized gas-lubricated porous journal bearings”, Wear, Vol. 40, No. 2, pp. 141-153, 1976.
[31]M.C. Majumder and B.C. Majumdar, “Analysis of pneumatic instability of externally pressurized porous gas journal bearings”, Journal of Lubrication Technology, Transactions ASME, Vol. 101, No. 1, pp. 48-53, 1979.
[32]N.S. Rao and B.C. Majumdar “Dynamic characteristics of gas-lubricated externally pressurized porous bearings with journal rotation I”, Journal of Lubrication Technology, Wear, Vol. 50, No. 1, pp. 59-70, 1978.
[33]N.S. Rao and B.C. Majumdar “Dynamic characteristics of gas-lubricated externally pressurized porous bearings with journal rotation II”, Journal of Lubrication Technology, Wear, Vol. 50, No. 2, pp. 201-210, 1978.
[34]M. Szwarcman and R. Gorez, “Design of aerostatic journal bearings with partially porous walls”, International Journal of Machine Tool Design and Research, Vol. 18, pp. 49-58, 1978.
[35]N.S. Rao, “Analysis of Aerostatic Porous Journal Bearings Using the Slip Velocity Boundary Conditions”, Wear, Vol. 76, No. 1, pp. 35-47, 1982.
[36]K. C. Singh, N. S. Rao, and B. C. Majumdar, “Effect of Slip Flow on the Steady State Performance of Aerostatic Porous Journal Bearings”, Journal of Tribology, Transactions of the ASME, Vol. 106, No. 1, pp. 156-162, 1984.
[37]M. Malik and C.M. Rodkiewicz, “On slip flow considerations in gas lubricated porous bearings” Journal of Tribology, Transactions of the ASME, Vol. 106, No. 4, pp. 484-491, 1984.
[38]M. Malik and C.M. Rodkiewicz, “Dynamical behaviour of externally pressurized gas-lubricated unloaded porous journal bearings”, Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, Vol. 198, No. 4, pp. 33-41, 1984.
[39]M.C. Majumder, and B.C. Majumdar, “Theoretical analysis of pneumatic instability of externally pressurized porous gas journal bearings considering velocity slip”, Journal of Tribology, Vol. 110, No. 4, pp. 730-733, 1988.
[40]M.C. Majumder, and B.C. Majumdar, “Non-linear transient analysis for an externally pressurized porous gas journal bearing”, Wear, Vol. 132, No. 1, pp. 139-150, 1989.
[41]S. Yoshimoto, H. Tozuka, and S. Dambara, “Static Characteristics of Aerostatic Porous Journal Bearings with a Surface-Restricted Layer” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 217, No. 2, pp. 125-132, 2003.
[42]M. A. Hassini and Mihai Arghir, “A Simplified Sonlinear Transient Analysis Method for Gas Bearings”, Journal of Lubrication Technology, Transactions ASME, Vol. 134, No. 1, pp. 1-12, 2012.
[43]陳育斌,氣體靜壓軸承動態性能分析與實驗研究,大葉大學機械工程研究所碩士論文,1998年。
[44]黃韋倫,高速氣靜壓主軸暨其軸承系統性能分析與實驗研究,彰化師範大學機電工程研究所博士論文,2012年。
[45]王雲飛,氣體潤滑機理與氣體軸承設計,機械工業出版社,1999。
[46]于雪梅,局部多孔質氣體靜壓軸承關鍵技術的研究,哈爾濱工業大學博士論文,2007。
[47]F.A.L. Dullien, “Porous Media:Fluid Transport and Pore Structure”, Academic Press, 1992.
[48]李柏勳,非接觸是多孔氣浮平臺參數設計之研究,大葉大學工業工程與科技管理學系碩士論文,2010。
[49]A. Kumar and N. S. Rao, “Steady State Performance of Finite Hydrodynamic Porous Journal Bearings in Turbulent Regimes”, Wear, Vol. 167, No. 2, pp. 121-126, 1993.
[50]Patankar, S. V. and Spalding, D. B., "A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows", International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[51]Micromeritics Instrument Corporation web site, www.micromeritics.com.
[52]G. Horvath and K. Kawazoe, “Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon”, Journal of Chemical Engineering of Japan, Vol. 16, No. 6, pp. 470-475, 1983.
[53]ISO 8573.1 Compressed Air, Contaminants and Purity Classes, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top