|
參考文獻
[1] 行政院衛生署統計公布欄,http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?class_no=440&level_no=1,2009。 [2] 柯獻欽,「頭號癌症殺手-肺癌」http://blog.udn.com/curecancer99/3107877,2009。 [3] 慈濟大學影像處理實驗室http://www.iplab.tcu.edu.tw/data/CT/CT_hi.htm,2007。 [4] Armato, III S. G., Giger, M. L., Moran, C. J., Blackburn, J. T., Doi, K., and MacMahon, H., “Computerized detection of pulmonary nodules on CT scans,” Radiographics, vol. 19, pp. 1303–1311, 1999. [5] Armato, III S. G., Giger, M. L., and MacMahon, H., “Automated detection of lung nodules in CT scans: Preliminary results,” Med. Phys., vol. 28, pp. 1552–1561, 2001. [6] Armato, III S. G., Altman, M. B., and LaRivière, P. J., “Automated detection of lung nodules in CT scans: Effect of image reconstruction algorithm,” Med. Phys. 30, 461–472, 2003. [7] Bellotti, R., De Carlo, F., Gargano, G., Tangaro, S., Cascio, D., Catanzariti, E., Cerello, P., Cheran, S. C., Delogu, P., De Mitri, I., Fulcheri, C., Grosso, D., Retico, A., Squarcia, S., Tommasi, E., and Golosio, B., “A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model,” Med. Phys. 34, 4901–4910, 2007. [8] Brown, M. S., Goldin, J. G., Suh, R. D., McNitt-Gray, M. F., Sayre, J. W., and Aberle, D. R., “Lung micronodules: automated method for detection at thin-section CT-initial experience,” Radiology 2003; 226:256-262. [9] Dajnowiec, M., Alirezaie, J., and Paul, B., "An adaptive rule based automatic lung nodule detection system," in Pattern Recognition and Image Analysis, Lecture Notes in Computer Science, 2005, pp. 773-782. [10] Das, M., Muhlenbruch, G., Mahnken, A. H., Flohr, T. G., Gundel, L., Stanzel, S., Kraus, T., Gunther, R. W., and Wildberger, J. E., “Small Pulmonary Nodules: Effect of Two Computer-aided Detection Systems on Radiologist Performance,” Radiology 2006; 241(2): 564-571. [11] Erberich, S. G., Song, K., Arakawa, H., Huang, H. K., Richard, W., Hoo, K. S., and Loo, B.W., “Knowledge-based lung nodule detection from helical CT,” Radiology, vol. 205P, p. 617, 1997. [12] Fischbach, F., Knollmann, F., Griesshaber, V., Freund, T., Akkol, E., and Felix, R., “Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness,” Eur Radiol 2003;13: 2378–2383. [13] Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever, M. A., “Multiscale vessel enhancement filtering,” In: Medical Image Computing and Computer-assisted Intervention (MICCAI’98), 1998, pp. 130–137. [14] Gierada, D. S., Pilgram, T. K., Ford, M., Fagerstrom, R. M., Church, T. R., Nath, H., Garg, K., and Strollo, D. C., “Lung Cancer: Interobserver Agreement on Interpretation of Pulmonary Findings at Low-Dose CT Screening,” Radiology 2008; 246(1): 265-272. [15] Giger, M. L., Bae, K. T., and MacMahon, H., “Computerized detection of pulmonary nodules in computed tomography images,” Investigat. Radiol.,vol. 29, pp. 459–465, 1994. [16] Golosio, B., Masala, G. L., Piccioli, A., Oliva, P., Carpinelli, M., Cataldo, R., Cerello, P., De Carlo, F., Falaschi, F., Fantacci, M. E., Gargano, G., Kasae, P., and Torsello, M., “A novel multithreshold method for nodule detection in lung CT,” Med. Phys. 36, 3607–36182009. [17] Gonzalez, R. C., and Woods, R. E., “Digital Image Processing 3rd ed,” ISBN 978-986-6534-10-2. [18] Gori, I., Fantacci, M., Preite Martinez, A., and Retico, A., “An automated system for lung nodule detection in low-dose computed tomography,” Proceedings of the SPIE on Medical Imaging 2007: Computer-Aided Diagnosis, vol. 6514, p. 65143R. 2007. [19] Gurcan, M. N., Sahiner, B., Petrick, N., Chan, H. P., Kazerooni, E. A., Cascade, P. N., and Hadjiiski, L., “Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system,” Med. Phys. 29, 2552–2558, 2002. [20] Hardie, R., Rogers, S., Wilson, T., and Rogers, A., “Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs,” Medical Image Analysis 12 (3), 240–258. 2008. [21] Heelan, R. T., Flehinger, B. J., Melamed, M. R., Zaman, M. B., Perchick, W. B., Caravelli, J. F., and Martini, N., “Non–small-cell lung cancer: results of the New York screening program,” Radiology 1984; 151:289–293. [22] Henschke, C. I., Mccauley, D. I., Yankelevitz, D. F., Naidich, D. P., McGuinness, G., Miettinen, O. S., Libby, D., Pasmantier, M., Koizumi, J., Altorki, N., and Smith, J. P., “Early Lung Cancer Action Project: A Summary of the Findings on Baseline Screening,” The Oncologist 2001; 6: 147-152. [23] Kanazawa, K., Kawata, Y., Niki, N., Satoh, H., Ohmatsu, H., Kakinuma, R., Kaneko, M., Moriyama, N., and Eguchi, K., “Computer-aided diagnosis for pulmonary nodules based on helical CT images,” Computerized Medical Imaging and Graphics 22 (2), 157–167. 1998. [24] Lee, T.-C., Kashyap, R. L., and Chu, C. N., “Building skeleton models via 3-D medial surface/axis thinning algorithms,” Graph. Models Image Processing, vol. 56, no. 6, pp. 462–478, 1994. [25] Lee, Y., Hara, T., Fujita, H., Itoh, S., and Ishigaki, T., “Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique,” IEEE Transactions on Medical Imaging 20 (7), 595–604. 2001. [26] Manohar, M. and Ramapriyan, H.K., “Connected component labeling of binary images on a mesh connected massively parallel processor,” Comput. Vision, Graphics, and Image Process. 45 2 (1989), pp. 133–149. [27] Matsumoto, S., and Kundel, H. L., “Pulmonary Nodule Detection In CT Images With Quantized Convergence Index Filter,” Medical Image Analysis, 2006, 10:343-352. [28] McNitt-Gray, M. F., Armato, S. G. 3rd, Meyer, C. R., Reeves, A. P., McLennan, G., Pais, R. C., Freymann, J., Brown, M. S., Engelmann, R. M., Bland, P. H., Laderach, G. E., Piker, C., Guo, J., Twofic, Z., Qing D. P-Y., Yankelevitz, D. F., Aberle, D. R., van Beek, E. J., MacMahon, H., Kazerooni, E. A., Croft, B. Y., and Clarke, L. P., “The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation,” Acad Radiol 2007;14:1464–1474. [29] Messay, T., Hardie, R. C., and Rogers, S. K., “A new computationally efficient cad system for pulmonary nodule detection in CT imagery,” Med. Image Anal., vol. 14, no. 3, pp. 390–406, Jun. 2010. [30] Opfer, R. and Wiemker, R., “Performance analysis for computer aided lung nodule detection on LIDC data,” Proc. SPIE 6515, 65151C.1–65151C.92007. [31] Remy-Jardin, M., Remy, J., Giraud, F., and Marquette, C.H., “Pulmonary nodules: detection with thick-section spiral CT versus conventional CT,” Radiology 1993; 187:513–520. [32] Retico, A., Delogu, P., Fantacci, M.E., Gori, I., and Preite Martinez, A., “Lung nodule detection in low-dose and thin-slice computed tomography,” Computers in Biology and Medicine 38 (4), 525–534. 2008. [33] Rubin, G., Lyo, J., Paik, D., Sherbondy, A., Chow, L., Leung, A., Mindelzun, R.,Schraedley-Desmond, P., Zinck, S., Naidich, D., and Napel, S., “Pulmonary noduleson multi-detector row CT scans: performance comparison of radiologists and computer-aided detection,” Radiology 234 (1), 274. 2005. [34] Saha, P. K., Chaudhuri, B. B., and Duuta Majumder, D., “A new shape preserving parallel thinning algorithm for 3D digital images,” Pattern Recogn 30 (1997), 1939–1955. [35] Sahiner, B., Hadjiiski, L., Chan, H., Shi, J., Cascade, P., Kazerooni, E., Zhou, C., Wei, J., Chughtai, A., Poopat, C., Song, T., Nojkova, J. S., Frank, L., and Attili, A., “Effect of CAD on radiologists’ detection of lung nodules on thoracic CT scans: observer performance study,” Proceedings of SPIE 6515, 65151D. 2007. [36] Sun, X., Zhang, H., and Duan, H., “3D computerized segmentation of lung volume with computed tomography,” Acad. Radiol. 13(6), 670–677 (2006). [37] Suzuki, K., Armato, S.G., Li, F., Sone, S., and Doi, K., “Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography,” Medical Physics 30 (7), 1602–1617. 2003. [38] Yim, Y. and Hong, H., “Correction of segmented lung boundary for inclusion of pleural nodules and pulmonary vessels in chest CT images,” Comput. Biol. Med. 38 (8) (2008), pp. 845–857. [39] Yuan, R., Vos, P. M., and Cooperberg, P. L., “Computer-Aided Detection in Screening CT for Pulmonary Nodules,” AJR 2006; 186:1280–1287. [40] Zhao, B., Gamsu, G., Ginsberg, M. S., Jiang, L., and Schwartz, L. H., “Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm,” J Appl Clin Med Phys 2003;4:248–260.
|