一、中文部份
李天行,唐筱菁(2004),整合財務比率與智慧資本於公司危機診斷模式之建構-類神經網路與多元適應性雲型迴歸之應用,資訊管理學報,11(2),161-189。林昱成,林金賢,陳雪如,莊家豪(2007),類神經模糊專家系統在訴訟預警模型之應用:以公司治理觀點,會計評論,44(1),95-126。馬秀如(2006),會計師揭發舞弊之責任-審計準則公報第43號導讀,會計研究月刊,253(12),44-61。許伯彥(2003),財務報表舞弊風險評量模式研究,國立台灣大學會計學研究所未出版之碩士論文。陳昭宏(2005),以事前控制觀點應用灰色預測理論與Logit式於財務危機預警模式之研究,商管科技季刊,6(4),655-676。陳雅琪(2007),董事會結構、家族控制持股、集團企業與財務報表舞弊之關聯性研究,國立成功大學會計學研究所未出版之碩士論文。黃承龍,陳穆臻,王界人(2004),支援向量機於信用評等之應用,計量管理期刊,1(2),155-172。
黃郁凱(2006),財務報表舞弊預警模式,國立政治大學會計學研究所未出版之碩士論文。會計研究發展基金會(2006),查核財務報表對舞弊之考量,台北:編製者發行。
二、英文部份
American Institute of Certified Public Accountants. (2002). Statement on Auditing Standards: Consideration of Fraud in a Financial Statement Audit (No.99). New York: Author.
Arminger, G., Enache, D., & Bonne, T. (1997). Analyzing credit risk data: A comparison of logistic discrimination classification tree analysis and feedforward networks. Computational Statistics, 12(2), 293-310.
Beasley, M. (1996). An empirical analysis of the relation between the board of director composition and financial statement fraud. The Accounting Review, 71(4), 443-466.
Bell, T., & Carcello, J. (2000). A decision aid for assessing the likelihood of fraudulent financial reporting. Auditing:A Journal of Practice and Theory, 9(1), 169-178.
Bierstaker, J. L., & Wright, S. (2001). A research note concerning practical problem-solving ability as a predictor of performance in auditing tasks. Behavioral Research in Accounting, 13(1), 49-62.
Cheng, J. (2001) J. Cheng’s Bayesian Belief Network Software: BN Power Predictor [Online]. Available: http://www.cs.ualberta.ca/~jcheng/bnsoft.htm [2001, October 4].
Calderon, T. G., & Cheh, J. J. (2002). A roadmap for future neural networks research in auditing and risk assessment. International Journal of Accounting Information Systems, 3(4), 203-236.
Carol, A., & Michael, C. (2001). The effects of experience and explicit fraud risk assessment in detecting fraud with analytical procedures. Accounting, Organizations and Society, 26(1), 25-37.
Chen, G. (2006). Positive research on the financial statement fraud factors of listed companies in China. Journal of Modern Accounting and Auditing, 2(6), 25-34.
Cullinan, P. G., & Sutton, G. S. (2002). Defrauding the public interest: A critical examination of reengineered audit processes and the likelihood of detecting fraud. Critical perspectives on Accounting, 13(3), 297-310.
Davies, P. C. (1994). Design issues in neural network development, Neurovest Journal, 5(1), 21-25.
Diamantaras, K. I., & Kung, S. Y. (1996). Principal component neural networks: Theory and applications, New York: Wiley.
Dunn, P. (2004). The impact of insider power on fraudulent financial reporting. Journal of Management, 30(3), 397-412.
Fanning, K., & Cogger, K. (1998). Neural network detection of management fraud using published financial data. International Journal of Intelligent Systems in Accounting, Finance and Management, 7(1), 21-24.
Farber, D. B. (2005). Restoring trust after fraud: Does corporate governance matter? The Accounting Review, 80(2), 539-561.
Green, B. P., & Choi, J. H. (1997). Assessing the risk of management fraud through neural network technology. Auditing: A Journal of Practice and Theory, 16(1), 14-27.
Kaminski, A., Kaminski, T., Wetzel, S., & Guan, L. (2004). Can financial ratios detect fraudulent financial reporting? Managerial Auditing Journal, 19(1), 15-28.
Kinney, W., & McDaniel, L. S. (1989). Characteristics of firms correcting previously reported quarterly earnings. Journal of Accounting and Economics, 11(1), 71-93.
Kirkos, S., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Application, 32(4), 995-1003.
Kohavi, R. (1995). A study of cross-validation and the bootstrap for accuracy estimation and model selection, Proceeding of 14th International Joint Conference on Artificial Intelligence (pp. 1137-1145), California: San Francisco.
Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2007). Forecasting fraudulent financial statements using data mining. International Journal of Computational Intelligence, 3(2), 104-110.
Liang, L., & Wu, D. (2005). An application of pattern recognition on scoring Chinese corporations financial conditions based on back-propagation neural network. Computer and Operations Research, 32(5), 1115-1129.
Lin, J. W., Hwang, M. I., & Becker, J. D. (2003). A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal, 18(8), 657-665.
Newton, A. C., Stewart, G. B., Diaz, A., Golicher, D., & Pullin, A. S. (2007). Bayesian belief networks as a tool for evidence-based conservation management. Journal of Nature Conservation, 15(2), 144-160.
Palmrose, Z. (1991). An analysis of auditor litigation disclosures. Auditing: A Journal of Practice and Theory, 10(1), 54-71.
Persons, O. (1995). Using financial statement data to identify factors associated with fraudulent financial reporting. Journal of Applied Business Research, 11(3), 38-46.
Pudil, P., Fuka, K., Beranek, K., & Dvorak, P. (1999). Potential of artificial intelligence based feature selection methods in regression models. IEEE 3ed International Conference on Computational Intelligence and Multimedia Application (pp. 159-163), USA: Washington DC.
Quinlan, J. R. (1986). Introduction of decision trees, Machine Learning, 1(1), 81-106.
Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann.
Ravi, V., Kurniawan, H., Thai, P. N. K., & Kumar, P. R. (2008). Soft computing system for bank performance prediction. Applied Soft Computing, 8(1), 305-315.
Rezaee, Z. (2005). Causes, consequences and deterrence of financial statement fraud. Critical Perspectives on Accounting, 16(3), 277-298.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representation by error propagation. Parallel Distributed Processing, 1(6), 318-362.
Seifert, J. W. (2004). Data mining and the search for security: Challenges for connecting the dots and databases. Government Information Quarterly, 21(4), 461-480.
Sharma, V. D. (2004). Board of director characteristics, institutional ownership and fraud-evidence from Australia. Auditing: A journal of practice and theory, 23(2), 105-117.
Spathis, C., Doumpos, M., & Zopounidis, C. (2002). Detecting falsified financial statements: A comparative study using multicriteria analysis and multivariate statistical techniques. The European Accounting Review, 11(3), 509-535.
Stamelos, I., Angelis, L., Dimou, P., & Sakellaris, D. (2003). On the use of bayesian belief networks for the prediction of software productivity. Information and Software Technology, 45(1), 51-60.
Summers, S. L., & Sweeney, J. T. (1998). Fraudulently misstated financial statements and insider trading: An empirical analysis. The Accounting Review, 73(1), 131-146.
Tang, A., Nicholson, A., Jin, Y., & Han, J. (2007). Using bayesian belief networks for change impact analysis in architecture design. The Journal of Systems and Software, 80(1), 127-148.
Viaene, S., Dedene, G., & Derrig, R. A. (2005). Auto claim fraud detection using bayesian learning neural networks. Expert Systems with Applications, 29(3), 653-666.
Welch, O. J., Reeves, T. E., & Welch, S. T. (1998). Neural network model: Bid pricing fraud. The Journal of Computer Information Systems, 38(3), 99-104.
Yen, E. C. (2007). Warning signals for potential accounting in blue chip companies - An application of adaptive resonance theory. Information Sciences, 177(20), 4515-4525.
Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62.