|
1. LK, H., Acute promyelocytic leukemia. Acta Med Scand, 1957. 159: p. 189-194.
2. Wang ZY, C.Z., Acute promyelocytic leukemia: from highly fatal to highly curable, Blood. 2008. p. 2505-2515.
3. Warrel RP, J.d.T.H., Wang ZY, Degos L, Acute promyelocytic leukemia. N Engl J Med, 1993. 329: p. 177-189.
4. de The H, L.C., Marchio A, The PML-RARa fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell, 1991. 66: p. 675-684.
5. de The H, C.C., Lanotte M, Degos L, Dejean A, The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature, 1990. 347: p. 558-561.
6. de The H, c.Z., Acute promyelocytic leukemia : novel insights into the mechanisms of cure. Nat Rev Cancer, 2010. 10: p. 775-783.
7. Huang ME, Y.Y., Chen SR,Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY, Use of all-trans retinoic acid in treatment of acute promyelocytic leukemia. Blood, 1988. 72: p. 567-572.
8. Tallman MS, N.C., Feusner JH, Rowe JM, Acute promyelocytic leukemia: evolving therapeutic strategies. Blood, 2002. 99: p. 759-767.
9. Nasr R, L.-B.V., Zhu J, Guillemin MC, de The H, Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin Cancer Res, 2009. 15: p. 6321-6326.
10. Wang ZY, C.Z., Acute promyelocytic leujemia: from highly fatal to highly curable. Blood, 2008. 111: p. 2505-2515.
11. Pei-Zheng Zheng, K.-K.W., Qun-Ye Zhang, Qiu-Hua Huang, Yan-Zhi Du, Qing-Hua Zhang, Da-Kai Xiao, Shu-Hong Shen, Sandrine Imbeaud, Eric Eveno, Chun-Jun Zhao, Yu-Long Chen, Hui-Yong Fan, Samuel Waxman, Charles Auffray, Gang Jin, Sai-Juan Chen, Zhu Chen, Ji Zhang, Systems analysis of transcriptome and proteome in retinoic acid arsenic trioxide-induced cell differentiation apoptosis of promyelocytic leukemia. PNAS, 2005. 102: p. 7653-7658.
12. Degos L, W.Z., All-trans retinoic acid in acute promyelocytic leukemia. Oncogene, 2001. 20: p. 7140-7145.
13. Frankel SR, E.A., Lauwers G, Weiss M, Warrell RP, The "retinoic acid syndrome" in acute promyelocytic leukemia. Ann Intern Med, 1992. 117: p. 292-296.
14. Tallman MS, A.J., Schiffer CA, Appelbaum FR, Feusner JH, Ogden A, Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood, 2000. 1: p. 90-95.
15. Eduardo Magalhães Rego, G.C.D.S., Differentiation Syndrome in Promyelocytic Leukemia: Clinical Presentation, Pathogenesis and Treatment. Mediterr J Hematol Infect Dis, 2011. 3: p. Open Journal System.
16. Viola A, L.A., Chemokines and thir receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol, 2008. 48: p. 171-197.
17. Tsai WH, H.H., Lin CC, Ho CK, Kou YR., Role of interleukin-8 and growth-regulated oncogene-alpha in the chemotactic migration of all-trans retinoic acid-treated promyelocytic leukemic cells toward alveolar epithelial cells. Crit Care Med. , 2007. 35: p. 879-885.
18. Puneet P, M.S., Bhatia M, Chemokines in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol, 2005. 288: p. 3-15.
19. Luesink M, P.J., Wissink WM, Linssen PC, Muus P, Pfundt R, de Witte TJ, van der Reijden BA, Jansen JH., Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: triggering the differentiation syndrome. Blood, 2009. 114: p. 5512-5521. 20. Fenaux P, C.C., Degos L., All-trans retinoic acid and chemotherapy in the treatment of acute promyelocytic leukemia. Hematol, 2001. 38: p. 13-25.
21. Schuster, M.H.K.a.D.P., The acute respiratory distress syndrome. N Engl J Med, 1995. 332: p. 27-37.
22. Reutershan, F.M.K.a.J., CXCR2 in Acute Lung Injury. Mediators of Inflammation, 2012. 2012: p. 1-8.
23. G. D. Rubenfeld, E.C., E. Peabody, Incidence and outcomes of acute lung injury. N Engl J Med, 2005. 353: p. 1685-1693.
24. Matthay, M.C.a.M.A., Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome. J Intensive Care Med, 2006. 21: p. 119-143.
25. L. J. Quinton, S.N., P. Zhang, K. I. Happel, L. Gamble, and G. J. Bagby, Effects of systemic and local CXC chemokine administration on the ethanol-induced suppression of pulmonary neutrophil recruitment. Alcoholism, 2005. 29: p. 1198-1205.
26. Abraham, E., Neutrophils and acute lung injury. Crit Care Med, 2003. 31: p. 195-199.
27. H. E. Broxmeyer, B.S.Y., C. Kim, G. Hangoc, S. Cooper, and C. Mantel,, Chemokine regulation of hematopoiesis and the involvement of pertussis toxin-sensitive Gαi proteins. Annals of the New York Academy of Sciences, 2001. 938: p. 117-128.
28. Butcher, J.J.C .E.C., Chemokines in tissuespecific and microenvironment-specific lymphocyte homing. Immunology, 2000. 12: p. 336-341.
29. C. H. Kim, E.C.B., and B. Johnston, Distinct subsets of human Vα24-invariant NKT cells: cytokine responses and chemokine receptor expression. Immunology, 2002. 23: p. 516-519.
30. Kerr, J.F., Wyllie, A. H., and Currie, A. R, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26: p. 239-257.
31. Norbury, C.J., and Hickson, Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol, 2001. 41: p. 367-401.
32. ELMORE, S., Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol, 2007. 35: p. 495-516.
33. Vermes, I., Haanen, C., and Reutelingsperger, C., Flow cytometry of apoptotic cell death. . J. Immunol. Methods, 2000. 243: p. 167-190.
34. Savill, J., and Fadok, Corpse clearance defines the meaning of cell death. Nature, 2000. 407: p. 784-788.
35. Kurosaka, K., Takahashi, M., Watanabe, N., and Kobayashi, Y, Silent cleanup of very early apoptotic cells by macrophages. J Immunol, 2003. 171: p. 4672-4679.
36. Igney, F.H., and Krammer, P. H., Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer, 2002. 2: p. 277-288.
37. Martinvalet, D., Zhu, P., and Lieberman, J, GranzymeAinduces caspaseindependent mitochondrial damage, a required first step for apoptosis. Immunity 2005. 22: p. 355-370.
38. Whyte MKB, M.L., MacDermot J and Haslett C Impairment of function in aging neutrophils is associated with apoptosis. J. Immunol, 1993. 150: p. 5124-5134.
39. Takizawa F, T.S.a.N.S., Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBSLett, 1996. 397: p. 269 -272.
40. Meagher LC, S.J., Baker A and Haslett C, Phagocytosis of apoptotic neutrophils does not induce macrophage release of Thromboxane B2. J. Leuk. Biol, 1992. 52: p. 269-273.
41. Savill J, R.Y., Stern M and Haslett C Uptake of post-apoptotic granulocytes via a novel polyanion-inhibitable recognitionmechanism. J.Am.Soc.Nephrol, 1996. 7 p. 17-19.
42. Hughes J, L., VanDamme J andSavill J, Human glomerularmesangial cell phagocytosis of apoptotic neutrophils: Mediation by a novel CD36-independent vitronectin receptor/thrombospondin recognition mechanism that is uncoupled from chemokine secretion. J. Immunol, 1997. 158: p. 4389-4397.
43. Fadok VA, B.D., Konowal A, Freed PW,Westcott JY and Henson PM, Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGFb, PGE2 and PAF. J. Clin. Invest., 1998. 101: p. 890-898.
44. Voll RE, H.M., Roth EA, Stach C and Kalden JR, Immunosuppressive effects of apoptotic cells. Nature, 1997. 390:: p. 350-351.
45. JJ, S.C.a.S., T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature, 1994. 372: p. 100-103.
46. Majno, G., and Joris, I, Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995. 146: p. 3-15.
47. Levin, S., Bucci, T. J., Cohen, S. M., Fix, A. S., Hardisty, J. F., LeGrand, E. K., Maronpot, R. R., and Trump, B. F, The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicol Pathol, 1999. 27: p. 484-490.
48. Zeiss, C.J., The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 2003. 40: p. 481-495.
49. Majno, G., and Joris, I, Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995. 146: p. 3-15.
50. Trump, B.F., Berezesky, I. K., Chang, S. H., and Phelps, P. C, The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol, 1997. 25 p. 82-88.
51. Angelillo-Scherrer, L.B.P.F.B.R.K.A., Cell-derived microparticles in haemostasis and vascular medicine. J Thromb Haemost, 2009. 101: p. 439-451.
52. Beyer C, P.D., The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol, 2010. 6: p. 21-29.
53. JM, F., Cellular microparticles: what are they bad or good for? J Thromb Haemost, 2003. 1: p. 1655-1662.
54. Fox JEB, A.C., Boyles JK, Role of the membrane skeleton in preventing the shedding of procoagulant- rich microvesicles from the platelet plasma membrane. J Cell Biol 1990. 111: p. 483-493.
55. Fox JE, A.C., Reynolds CC, Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J BiolChem 1991. 266: p. 13289-13295.
56. McLaughlin PJ, G.J., Mannherz HG, Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature, 1993. 364: p. 685-692.
57. Gasser O, S.J., Activated polymorphonuclear neutrophils siddeminate anti-inflammatory microparticles by ectocytosis. Blood, 2004. 104: p. 2543-2548.
58. Christian B, D.S., The role of microparticles in the pathogenesis of rheumatic disease. Nature, 2010. 6: p. 21-29.
59. Gerke V, M.S., Annexins: from structure to function Physiol Rev, 2002. 82: p. 331-371.
60. Gerke, V., Creutz, C. E. &; Moss, S. E., Annexins: linking Ca2+ signalling to membrane dynamics. . Nature Rev Mol. Cell Biol, 2005. 6: p. 449-461. 61. Rhen, T.C., J. A, Antiinflammatory action of glucocorticoids - new mechanisms for old drugs. N. Engl. J. Med, 2005. 353: p. 1711-1723
62. Parente, L.S., E., Annexin 1: more than an antiphospholipase protein. . Inflamm. Res, 2004. 53: p. 125-132.
63. Perretti, M., Annexin I is stored within gelatinase granules of human neutrophils and mobilised on the cell surface upon adhesion but not phagocytosis. Cell Biol. Int. , 2000. 24: p. 163-174.
64. Wein, S.e.a., Mediation of annexin 1 secretion by a probenecid sensitive ABC transporter in rat inflamed mucosa. Biochem. Pharmacol, 2004. 67: p. 1195-1202.
65. Solito, E.e.a., Post-translational modification plays an essential role in the translocation of annexin A1 from the cytoplasm to the cell surface. . FASEB J, 2006. 20: p. 1498-1500.
66. Walther, A., Riehemann, K. &; Gerke, V. , A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell 2000. 5: p. 831-840.
67. Davidson J, F.R., Milton AS, Peer SH, Rotondo D, Antipyretic actions of human recombinant lipocortin-1 Br J Pharmacol, 1991. 102: p. 7-9.
68. Ferriar SH, C.F., Lorenzetti BB, Michelin MA, Perretti M, Flower RJ, Pools S, Role of lipocortin-1 in the anti-hyperalgesic actions of dexamethasone. Biochem. Pharmacol, 1997. 50: p. 883-888.
69. Ramirez, F., Glucocorticoids induce a Th2 response in vitro. Dev. Immunol., 1998. 6: p. 233-243
70. Ramirez, F., Fowell, D. J., Puklavec, M., Simmonds, S.,Mason, D, Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J. Immunol. , 1996. 156: p. 2406-2412.
71. Perretti, M., Dalli J, Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br J Pharmacol, 2009. 158: p. 936-946.
72. Lim LH, P.S., Annexin A1: the new face of an old molecule. FASEB J, 2007. 21: p. 968-975.
73. Charles N Serhan, J.S., Resolution of inflammation: the beginning programs the end. Nature Immunology, 2005. 6: p. 1191 - 1197.
74. Dalli J, N.L., Renshaw D, Cooper D, Leung KY, Perretti M, Annexin A1 mediates the rapid anti-inflammatory effects of neutrophil- derived microparticles. Blood, 2008. 112: p. 2512-2519.
75. R. Mangiarotti, M.D., R. Alberici, and C. Pellicciari, All-trans retinoic acid (ATRA)-induced apoptosis is preceded by G1 arrest in human MCF-7 breast cancer cells. Br J Cancer, 1998. 77: p. 186-191. .
76. 吳虹毅, Role of lipoxin A4 in resolution phase of retinoic acid syndrome 國立陽明大學生理學研究所碩士論文, 2009.
77. Du, C., Redner, R. L., Cooke, M. P. &; Lavau, C, Overexpression of wild type retinoic acid receptor α (RARα) recapitulates retinoic acid sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RAR α fusion genes. Blood, 1999. 94: p. 793-802
78. Zhong, S., Salomoni, P. &; Pandolfi, P. P. , The transcriptional role of PML and the nuclear body. Nature Cell Biol. , 2000. 2: p. 85-90.
79. Cicalese, A.e.a., The tumor suppressor p53 regulates polarity of self‑renewing divisions in mammary stem cells. Cell 2009. 138: p. 1083-1095.
80. Chen, H.d.T.a.Z., Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nature Rev, 2010. 10: p. 775-783.
81. E E Torr, D.H.G., L Thomas, D M Goodall, A Bielemeier, R Willetts, H R Griffiths, L J Marshall and A Devitt, Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells. Cell Death Differ , 2012. 19: p. 671-679. 82. Irini Bournazou, J.D.P., Rodger Duffin, Stylianos Bournazos, Lynsey A. Melville, Simon B. Brown, Adriano G. Rossi, and Christopher D. Gregory, Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest, 2009. 119: p. 20-32.
83. Danute Pupjalis, J.G., Diane J. Kottas, Volker Gerke, Ursula Rescher, Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling. EMBO Molecular Medicine, 2011. 3: p. 102-114.
84. 簡弘育, Annexin A1 mediateds the anti-inflammatory effect of microparticles released from retinoic acid- treated acute promyelocytic leukemic cells. 國立陽明大學 生理學研究所碩士論文, 2010.
|