[1] T. Jüstel, H. Nikol, and C. Ronda, “New Developments in the Field of Luminescent Materials for Lighting and Displays”, (Angewandte Chemie International Edition, WILEY-VCH Verlag GmbH, 1998).
[2] M. Ilmer, R. Lecheler, H. Schweizer, and M. Seibold, “37.1: Invited Paper: Hg-free Flat Panel Light Source PLANON- a Promising Candidate for Future LCD Backlights”, SID Symposium Digest of Technical Papers 31, pp. 931-933 (2000).
[3] U. Kogelschatz, “Excimer lamps: history, discharge physics and industrial applications”, Proceedings of SPIE 5483, pp. 272-286 (2004).
[4] A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: a critical review”, Solid-State Electronics 45, pp. 963-976 (2001).
[5] G. G. Lister, J. E. Lawler, W. P. Lapatovich, and V. A. Godyak, “The physics of discharge lamps”, Reviews of Modern Physics 76, 541 (2004).
[6] K. W. Park, H. S. Hwang, M. H. Han, H. K. Baik, and K. M. Song, “Improvement of the vacuum ultraviolet efficiency of low pressure Xe discharge by nitrogen admixture”, Applied Physics Letters 92, pp. 061502-061503 (2008).
[7] J. P. Boeuf, “Plasma display panels: physics, recent developments and key issues”, Journal of Physics D: Applied Physics 36, pp. 53-79 (2003).
[8] 藍永強,鍾岳宏,徐兆鋐,張德安,柳克強,「電漿科學與平面顯示器」,物理雙月刊,第28卷,第2期,452-465頁 (2006).[9] Kazuyuki Hasegawa, Kaname Mizokami, Yoshinao Oe, Masaki Aoki, “PLASMA DISPLAY PANEL”, United States Patent, 7391156 B2 (2008).
[10] R. Meyer, Eurodisplay Workshop Digest, 56 (1993).
[11] C. A. Spindt, “A thin-film field-emission cathode”, Journal of Applied Physics 39, pp. 3504-3505 (1968).
[12] Y. Saito, S. Uemura and K. Hamaguchi, “Cathode ray tube lighting elements with carbon nanotube field emitters”, Japanese Journal of Applied Physics 37, pp. 346-348 (1998).
[13] 李家宏,「平面電子發射光源之特性與發光機制探討」,國立交通大學,博士論文,民國100年。[14] 關旻宗,「表面導電電子發射顯示器簡介」,電子與材料雜誌,第27期,37-44頁 (2005)。
[15] M. Itoh, and L. Ozawa, “Cathodoluminescent phosphors”, Annual Reports Section "C" (Physical Chemistry) 102, pp. 12-42 (2006).
[16] L. Ozawa, and M. Itoh, “Cathode ray tube phosphors”, Chemical Reviews 103, pp. 3835-3855 (2003).
[17] W.Sun, M. A.Morrison, W. A. Isaacs, W. K. Trail, D. T. Alle, R. J. Gulley, M. J. Brennan, S. J. Bukman, “Detailed theoretical and experimental analysis of low-energy electron-N2 scattering”, Physical review A 52, pp. 1229-1256 (1995).
[18] H. S. UHM, E. H. Choi, G. Cho, K. W. Whang, “Electrical Breakdown Voltage In a Mixed Gas”, Japanese Journal of Applied Physics 40, pp. 295-297 (2001).
[19] E. Gargioni, B. Grosswendt, “Electron scattering from argon: Data evaluation and consistency”, Review of Modern Physics 80, pp. 451-480 (2008).
[20] J.-Y. Li, S.-P. Chen, C.-H. Li, Y.-P. Lin, Y.-I. Chou, M.-C. Liu, P.-H. Wang, H.-K. Zeng, T.-C. Hsieh, and J.-Y. Juang, “A lighting mechanism for flat electron emission lamp”, Applied Physics Letters 94, pp. 091501-091503 (2009).
[21] J. Y. Li, M. C. Liu, Y. P. Lin, S. P. Chen, T. C. Hsieh, P. H. Wang, C. L. Chiang, M. S. Jeng, L. L. Lee, H. K. Zeng and J. Y. Juang, “A Lighting Mechanism for Flat Electron Emission Lamp”, Cathodoluminescence ed, Naoki Yamamoto (Croatia) InTech, pp. 305-24 (2012).
[22] 劉旻忠,江昌霖,李家宏,李中裕,王博弘,林依萍,陳世溥,「新型類氣體放電燈-平面電子發射光源」,真空科技,第26卷,第2期,452-465頁 (2013).[23] A. Von Engel, Ionized gases (AIP Press, Woodbury, NY, 1994).
[24] M. J. Druyvesteyn, and F. M. Penning, “The Mechanism of Electrical Discharges in Gases of Low Pressure”, Reviews of Modern Physics 12, 87 (1940).
[25] E. Nasser, Fundamentals of gaseous ionization and plasma electronics, Wiley-Interscience, New York (1971).
[26] J. R. Roth, “Industrial plasma engineering, vol. 1, Principles”, Institute of Physics Publishing, Bristol, Philadelphia, (1995).
[27] A. Von Engel, Electric plasmas : their nature and uses, Taylor & Francis Ltd., London, (1983).
[28] 康仕政,「單級高功因電子式安定器之研製」,國立成功大學,碩士論文,民國92年。[29] A. M. Howatson, An introduction to gas discharges, Pergamon, 2nd edition (1965).
[30] Brain Chapman, “Glow discharge processes : sputtering and plasma etching”, Wiley-Interscience (1980).
[31] A. L. Ward, “Effect of space charge in cold-cathode gas discharges”, Phys. Rev. 112, pp. 1852-1857 (1958).
[32] A. L. Ward, “Calculations of cathode-fall characteristics”, Journal of Applied Physics 33, pp. 2789-2794 (1962).
[33] Y. P. Raizer, Gas discharge physics, Springer-Verlag, Berlin (1991).
[34] E. Nasser, Fundamentals of gaseous ionization and plasma electronics (Wiley-Interscience, New York, 1971).
[35] 徐學基,諸定昌,「氣體放電物理」,復旦大學出版社 (1995).
[36] Cobine, James Dillon, Gaseous conductors, Dover Publications, New York (1958).
[37] M. A. Lieberman and A. J. Lichtenberg, “Principles of plasma discharges and materials processing”, John Wiley & Sons, Inc.(2005).
[38] Motoshige Yumoto, Yoshitaka Kuroda, Takao Sakai, “Electron energy distribution of glow-like discharge in nitrogen at very high E/n conditions”, Journal of Physics D: Applied Physics 24, pp. 1594-1600 (1991).
[39] J. S. Townsend, Electricity in gases, Oxford, clarendon Press (1915).
[40] Essmaer Nasser,“Fundamentals of Gaseous Ionization and plasma Electronics”, Wiley-Interscience, New York (1971).
[41] Rakhwan Kim, Younghyun Kim, Jinhui Cho, and Jong-Wan Park, “Luminous efficiency and secondary electron emission characteristics of alternating current plasma display panels with MgO-SrO-CaO protective layers”, Journal of Vacuum Science & Technology A 18, pp. 2493-2496 (2000).
[42] H. Uchiike, K. Miura, N. Nakamura, T. Shinoda, and Y. Fukushima, “Secondary electron emission characteristics of dielectric materials in AC-operated plasma display panels” IEEE Trans. Electron Devices 23, pp. 1211-1217 (1976).
[43] K. Ul'yanov, “The Runaway of Electrons and the Formation of Beams in Glow Discharges”, in High Temperature(Springer Science & Business Media B.V., 2005), pp. 641-652.
[44] B. M. Jelenkovicacute, and A. V. Phelps, “Excitation of N2 in dc electrical discharges at very high E/n”, Physical Review A 36, pp. 5310-5326 (1987).
[45] A. V. Phelps, B. M. Jelenkovicacute, and L. C. Pitchford, “Simplified models of electron excitation and ionization at very high E/n”, Physical Review A 36, pp. 5327-5336 (1987).
[46] G. G. Lister, “Low-pressure gas discharge modelling”, Journal of Physics D: Applied Physics 25, pp. 1649-1680 (1992).
[47] M. A. Folkard, and S. C. Haydon, “Experimental investigations of ionization growth in nitrogen. I”, Journal of Physics B: Atomic and Molecular Physics 6, 214 (1973).
[48] G. Auday, P. Guillot, J. Galy, and H. Brunet, “Experimental study of the effective secondary emission coefficient for rare gases and copper electrodes”, Journal of Applied Physics 83, pp. 5917-5921 (1998).
[49] H. Oechsner, “Electron yields from clean polycrystalline metal surfaces by noble-gas-ion bombardment at energies around 1 keV”, Physical Review B 17, pp. 1052-1056 (1978).
[50] H. D. Hagstrum, “Auger ejection of electrons from molybdenum by noble gas ions”, Physical Review 104, pp. 672-683 (1956).
[51] E. V. Alonso, R. A. Baragiola, Ferr, oacute, J. n, M. M. Jakas, and A. Oliva-Florio, “Z1 dependence of ion-induced electron emission from aluminum”, Physical Review B 22, pp. 80-87 (1980).
[52] D. B. Medved, P. Mahadevan, and J. K. Layton, “Potential and Kinetic Electron Ejection from Molybdenum by Argon Ions and Neutral Atoms”, Physical Review 129, 2086 (1963).
[53] R. J. Beuhler, and L. Friedman, “Model of secondary electron yields from atomic and polyatomic ion impacts on copper and tungsten surfaces based upon stopping‐power calculations” Journal of Applied Physics 48, pp. 3928-3936 (1977).
[54] M. J. Druyvesteyn, and F. M. Penning, “The mechanism of electrical discharges in gases of low pressure”, Review of Modern Physics 12, pp. 87-176 (1940).
[55] G. Auday, P. Guillot, and J. Galy, “Secondary emission of dielectrics used in plasma display panels”, Journal of Applied Physics 88, pp. 4871-4874(2000).
[56] Y. Motoyama, and F. Sato, “Calculation of secondary electron emission yield γ from MgO surface”, , IEEE Transactions on Plasma Science 34, pp. 336-342 (2006).
[57] B. L. Henke, J. A. Smith, and D. T. Attwood, “0.1--10-keV x-ray-induced electron emissions from solids-Models and secondary electron measurements”, Journal of Applied Physics 48, pp. 1852-1866 (1977).
[58] Paul Goldberg, Luminescence of inorganic solids, Academic Press, New York (1966).
[59] L. Ozawa, Cathodoluminescence and Photoluminescence, Theory and practical application (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2007).
[60] S. O. Kasap, “Optoelectronics and Photonics:Principles and Practices”, (Upper Saddle River, N.J. : Prentice Hall : Pearson Education, cop. 2001), p121.
[61] G. Blass, and B. C. Grabmaier, “Luminescent Materials”, (Springer Verlag, Berlin Heidelberg, Germany, 1994).
[62] S. Shionoya, S. Shionoya, W. M. Yen (Eds.), “Phosphor handbook”, (CRC Press LLC, New York, 1999).
[63] D. R. Vij, and N. singh, “Luminescent and Related Properties of II-VI semiconductors”, Nova Science Publishers (1998).
[64] 唐自標,「硫化鋅系螢光材料的製備與其發光特性之研究」,大同工學院材料工程研究所,博士論文,民國87年。[65] D.R.Vij, and N. Singh, ”Luminescence of Inorganic Solids”, Academic Press, p.207 (1966).
[66] H. W. Leverenz, “Luminescence of Solids”, John Wiley & Sons, New York (1950).
[67] 楊英俊,「我國電子工業螢光材料之應用現況」,材料與社會,第70期,民國81年。
[68] Romesh C. Sharma, and Y. Austin Chang, “Thermodynamic analysis and phase equilibria calculations for the Zn-Te, Zn-Se and Zn-S systems”, J. Crystal Growth 88, pp.193-204 (1988).
[69] A. H. Kitai, “Solid State Luminescence”, Chapman&Hall, Lomdonp, U.K. (1993).
[70] Chung-Hoo Park, Joon-Young Choi, Min-Suk Choi, Young-Kee Kim, Ho-Jun Lee, Surface & Coatings Technology 197, pp. 223–228 (2005).
[71] Eun-Ha Choi, Hyun-Joo Oh, Young-Guon Kim, Jae-Jun Ko, Dae-Il Kim, Guangsup Cho, Guang-Sup Cho, Jae-Yong Lim, Jin-Goo Kim, “Measurement of secondary electron emission coefficient of MgO protective layer with various crystallinities”, Japan Journal of Applied Physics 37, pp.7015-7018 (1998).
[72] 王兆祥,“The Structural , Magnetic and Electrical Properties of Fe-Mg-O Thin Film on MgO(100) or STO(100) Substrates”, 國立中正大學物理研究所,碩士論文,民國94年。
[73] 李正中,「薄膜光學與鍍膜技術」,藝軒圖書出版社(第五版),民國95年。
[74] Eun-Ha Choi, Jae-Yong Lim, Young-Guon Kim, Jae-Jun Ko, Dae-Il Kim, Choon-Woo Lee, Guang-Sup Cho, “Secondary electron emission coefficient of a MgO single crystal”, Journal of Applied Physics 86, pp. 6525-6527 (1999).
[75] 吳濟宇,「陰極材料對平面電子發射光源元件之影響」,中原大學,碩士論文,民國99年。[76] 盧志軒,「利用電子束蒸鍍在ZnO/Glass上沉積氧化鋁薄膜以改善表面聲波元件之特性」,大同大學,碩士論文,民國99年。[77] R. Cueff, G. Baud, M. Benmalek, J. P. Besse, J. R. Butruille, H. M. Dunlop, and M. J acquet, “Characterization and adhesion study of thin alumina coatings sputtered on PET”, Thin Solid Films 270, pp. 230-236 (1995).
[78] R. Cueff, G. Baud, M. Benmalek, J.P. Besse, J.R. Butruille, and M.Jacquet, “X-ray photoelectron spectroscopy studies of plasma-modifier PET surface and alumina/PET interface”, Applied Surface Science 115, pp. 292-298 (1997).
[79] F. Fietzke, K. Goedicke, and W. Hempel, “The deposition of hard crystalline Al2O3 layers by means of bipolar pulsed magnetron sputtering”, Surface and Coatings Technology 86-87, pp. 657-663 (1996).
[80] 倪簡白,「氮氣光譜之研究Ⅰ: C3Πu-X1Σg+及a1Πg- X1Σg+系統」,國立中央大學,博士論文,民國99年。
[81] G. Herzberg, J. W. T. Spink and F.R.S.C. Spectra of Diaotmic Molecules, pp. 92-152 (1977).
[82] R. W. B. PEARSE and A. G. Gayoon, “The Identification of Molecular Spectra”, pp. 217-216 (1976).
[83] A. V. Phelps, “Abnormal glow discharges in Ar: experiments and models”, Plasma Sources Science and Technology 10, pp. 329-343 (2001).
[84] S. C. Haydon, and O. M. Williams, "Experimental investigations of ionization growth in nitrogen. II," Journal of Physics B: Atomic and Molecular Physics 6, 227 (1973).
[85] K. Sooklal, B. S. Cullum, S. M. Angel, and C. J. Murphy, “Photophyscial properties of ZnS Nanoclusters with Spatially Localized Mn2+”, Journal of Physical Chemistry 100, pp. 4551-4555 (1996).
[86] H. W. Leverenz, “An Introduction to Luminescence of Solids”, John Wiley & Sons, New York (1950).
[87] R. N. Bhargave, D. Gallagher, X. Hong, and A. Nurmikko, “Optical Properties of Manganese-Doped Nanocrystals of ZnS”, Physical Review Letters 72, pp. 416-419 (1994).
[88] C. L. Chiang, H. K. Zeng, C. H. Li, J. Y. Li, S. P. Chen, Y. P. Lin, T. C. Hsieh, and J. Y. Juang, “Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp”, AIP ADVANCES 6, pp. 015317-1-8 (2016).
[89] 陳昱霖,「石榴石(Y3Al5O12)螢光體之合成與性質研究」,國立成功大學材料科學及工程學系,碩士論文,民國90年。[90] 陳怡冰,「鹼土硫化物螢光粉之新穎合成與發光特性之研究」,國立交通大學應用化學系,碩士論文,民國90年。[91] 邱冠鈞,「平面電子發射光源之氣體放電特性研究」,中原大學電子工程學系,碩士論文,民國99年。[92] Sang Jik Kwon and Chan Kyu Jang, “Effect of base vacuum level on plasma display panel discharge characteristics and efficacy”, Japanese Journal of Applied Physics 45, pp. 804-809 (2006).
[93] Z. Wron’ ski, “Dissociation of nitrogen in the plasma-cathode interface of glow discharges”, Vacuum 78, pp. 641-647 (2005).
[94] A. S. da Silva Sobrinho, N. Schu¨hler, J. E. Klemberg-Sapieha, M. R. Wertheimer, M. Andrews, and S. C. Gujrathi, “Plasma-deposited silicon oxide and silicon nitride films on poly(ethylene terephthalate): A multitechnique study of the interphase regions”, Journal of Vacuum Science & Technology A 16, pp.2021-2030 (1998).
[95] Walkowicz, “On the mechanisms of diode plasma nitriding in N2-H2 mixtures under DC-pulsed substrate biasing”, Surface and Coatings Technology 174-175, pp.1211-1219 (2003).
[96] Matsuzuki Y, Suzuki N, Hirayama T, “Rate of Production of Water Vapour in Low-Power, High-Repetition-Rate Discharge Cleaning”, Japanese Journal of Applied Physics 25, pp. 253-257 (1986).
[97] 楊明輝,「透明導電薄膜」,藝軒圖書出版社(第五版),民國98年。
[98] C. H. Li, M. C. Liu, C. L. Chiang, J. Y. Li, S. P. Chen, T. C. Hsieh, Y. I. Chou, Y. P. Lin, P. H. Wang, M. S. Chun, H. K. Zeng and J. Y. Juang, “Discharge and photo-luminance properties of a parallel plates electron emission lighting device”, Optics Express 19, pp. A51-56 (2011).
[99] 陳秉豪,「氧化物薄膜對平面電子發射光源特性之研究」,中原大學電子工程學系,碩士論文,民國103年。[100] Y. Cheng, and O. Zhou, “Electron field emission from carbon nanotubes”,Comptes Rendus Physique 4, pp. 1021-1033 (2003).
[101] S. C. Tseng, C. H. Li, Y. Y. Lin, C. H. Tsai, Z. P. Wang, K. C. Leou, C. H. Tsai, S. P. Chen, J. Y. Lee, and B. C. Yao, “Field emission characteristics of a single free standing carbon nanotube with gate electrode”, Diamond and Related Materials 14, pp. 2064-2068 (2005).
[102] Z. Donko, P.Hartmann, K.Kutasi, “On the reliability of low-pressure dc glow discharge modelling”, Plasma Sources Science and Technology 15, pp. 178-186 (2006).
[103] Y. Sosov, and C. E. Theodosiou, “Determination of electric field-dependent effective secondary emission coefficients for He/Xe ions on brass”, Journal of Applied Physics 95, pp. 4385-4388 (2004).
[104] T. J. Vink, A. R. Balkenende, R. G. F. A. Verbeek, H. A. M. van Hal, and S. T. de Zwart, “Materials with a high secondary-electron yield for use in plasma displays”, Applied Physics Letters 80, pp.2216-2218 (2002).
[105] R. C. Alig, and S. Bloom, “Secondary‐electron‐escape probabilities”, Journal of Applied Physics 49, pp. 3476-3480 (1978).
[106] Jun Seok Oh and Eun Ha Choi, “Ion-Induced Secondary Electron Emission Coefficient (γ) from MgO Protective Layer with Microscopic Surface Structures in Alternating Current Plasma Display Panels”, Japanese Journal of Applied Physics 43, pp. L1154-1155 (2004).
[107] Jae Yong Lim, Jun Soek Oh, Byung Doc Ko, Jae Won Cho, Seung Oun Kang, Guangsup Cho, Han Sup Uhm, and Eun Ha Choi, “Work function of MgO single crystals from ion-induced secondary electron emission coefficient”, Journal of Applied Physics 94, pp.764-769 (2003).
[108] A. V. Phelps and Z. L. Petrovic, “Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons”, Plasma Sources Science and Technology 8, pp. R21-R44 (1999).
[109] Donk, oacute, Z., K. zsa, R. C. Tobin, and K. A. Peard, “Modeling and measurements on an obstructed glow discharge in helium”, Physical Review E 49, pp. 3283-3289 (1994).