跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 05:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江昌霖
研究生(外文):Chiang, Chang-Lin
論文名稱:平面電子發射光源之電光轉換機制與二次電子係數探討
論文名稱(外文):Electro-optical conversion and secondary electron emission in flat electron emission lamp by optical emission spectra
指導教授:莊振益
指導教授(外文):Juang, Jenh-Yih
口試委員:吳光雄謝太炯鄭慧愷陳世溥李中裕
口試委員(外文):Wu, Kaung-HsiungHsieh,Tai-ChiungZeng, Hui-KaiChen, Shih-PuLi, Jung-Yu
口試日期:2016-04-29
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:106
中文關鍵詞:平面電子發射光源氣體放電電光轉換機制二次電子係數
外文關鍵詞:Flat electron emission lampGas dischargeElectro-optical conversion mechanismSecondary electron emission coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
平面電子發射光源(Flat Electron Emission Lamp, FEEL)為一新創之平面光源,擁有雙面均勻發光、透明、與隔熱等特性。其工作原理為電子在外加電場作用下加速激發陽極螢光粉致使發光,而電子主要有兩種來源:一為氣體游離產生自由電子;二為離子化氣體原子撞擊陰極材料後產生二次電子。
平面電子發射光源為一短電極間距之發光元件,元件操作於pd值(氣體壓力與電極間距離的乘積)小的操作區間,此帕邢曲線左側之氣體放電特性常被忽略。本論文以傳統氣體放電管的放射光譜與發光特性為基礎,探討氮氣為操作氣體的平面電子發射光源元件放電與發光機制。實驗結果顯示平面電子發射光源元件在操作壓力介於0.4torr至1torr之間時,元件內部的能量分別提供給氮氣分子光譜的第二正帶能階(337 nm and 357.5 nm)與氮氣離子光譜的第一負帶能階(391.5 nm and 427.5 nm)。當元件操作壓力低至0.3torr時,氮氣離子光譜的第一負帶能階(391.5nm)為主導FEEL元件發光的激發源,其光譜強度隨著氣壓下降而減弱並消失。此氮氣離子光譜訊號強度值皆遠大於第二正帶能階的氮氣分子光訊號,因此,在此操作區域大部分輸入元件的能量提供給氮氣第一負帶能階的離子光譜。此外,在接近於FEEL元件的陰極電極1mm處,氮氣操作氣壓範圍為0.12 torr ~ 1orr,元件內部幾乎由氮氣離子光譜中的第一負能帶所主導。FEEL放射光譜特性顯示,元件由氮氣離子光譜中的第一負能帶所主導,此離子在外加電場作用下將撞擊陰極產生二次電子,提供激發陽極螢光粉發光的電子來源。因此,由元件發光特性受到氮氣離子光譜強度、陰極材料的二次電子係數、電子動能與螢光粉電致發光效率等影響,可以進一步建立元件電光轉換機制的模型,並與FEEL元件實際量測之發光輝度進行比對驗證。由能量轉換模型與輝度值量測結果發現,平面電子發射光源的發光輝度隨著元件內部的操作氣壓下降而提高,隨著操作氣壓的下降,電子的自由路徑變大,因此高能量電子與少數氣體產生碰撞游離,將大部分的電子能量轉移給螢光粉發光,因此可得到較高輝度值。
由於FEEL元件操作於帕邢曲線左半部,此區域的氣體分子少、元件的崩潰電壓迅速提升, FEEL具有以下的缺點: (一)較高的元件操作電壓、(二)元件發光效率不佳、(三)較短的使用壽命等缺點。因此,在陰極導電薄膜上製鍍保護層能增加元件之使用壽命及提升元件發光效率。本論文比較FTO(fluorine-doped tin oxide)、氧化鋁(Al2O3/FTO)及氧化鎂(MgO/FTO)薄膜應用於平面電子發射光源元件之陰極材料,探討FEEL元件於崩潰電壓的物理特性,並分析三種不同陰極電極材料的崩潰電壓與二次電子係數。實驗結果發現發光元件內E/p~10000 V/torr-cm,陰極材料的二次電子係數,FTO為0.193,Al2O3/FTO為0.263,MgO/FTO為0.396。陰極材料二次電子發射係數越高,有效提升FEEL元件的發光效能,且降低元件的崩潰電壓,使得元件之使用壽命增長約四倍。

Flat Electron Emission Lamp (FEEL) is a newly developed type of uniform planar light source, featuring unique advantages of double-side lighting, transparency, and heat insulation over the conventional lighting sources. The working principle of FEEL utilizes electrons accelerated by external electric field to excite the phosphor powders coated on the anode to obtain desired luminescence. The abovementioned electrons can be generated from two different sources: the free electrons originated from gas ionization and the secondary electrons generated from the bombardment of ionized gases to the cathode material.
However, since FEELs are devices with very short electrode-distance and low working pressure, (i.e. low pd values), they are inevitably operating on the left-hand side of the Paschen curve, and the detailed physical mechanisms are relatively unexplored. In this thesis, we shall focus our discussions on the discharge and lighting characteristics exhibited in typical FEEL devices based on the knowledge obtained from the conventional long discharge tubes by using optical emission spectroscopy. It is evident that, similar to that conventional long discharge tube, emissions from both of the first negative system (391.5 nm and 427.5 nm) of N2+ and the second positive system (337 nm and 357.5 nm) of N2 are present for pressures above 0.4 torr. As the pressure is further reduced to below 0.3 torr, the 391.5 nm emission from the first negative system becomes the dominant excitation, which diminishes gradually and disappears completely at 0.14 torr. Moreover, the relative emission intensity obtained at the position of 1 mm from the cathode, the emissions from the first negative system of N2+ are, in fact, already dominant over the entire pressure range (0.14-1.0 torr). The FEEL devices exhibit essentially the same pressure-dependent emission features as seen in the conventional long glow discharge tubes. In particular, similar to the long glow discharge tubes without positive columns, the FEEL devices are essentially working on the left hand side of the Paschen curve, as well. Under these circumstances, in addition to the collisional ionization processes necessary for maintaining a steady-state discharge, the primary energy transferring mechanism is utilizing electrons accelerated by external electric field to excite the phosphor powders coated on the anode to obtain desired luminescence. The results indicated that the lighting properties were dominated by first negative band B2∑u+→X2∑g+ of nitrogen ion and the secondary electrons were generated primarily from the bombardment of ionized gases to the cathode material, which, in turn, were accelerated by the applied voltage to excite the phosphor coating on the anode. Based on the proposed electro-optical transfer model, nitrogen ions emission, secondary electron coefficient of material, electron energy, and phosphor lighting efficiency were identified as the four most prominent parameters in determining the lighting of FEEL. We successfully prove the viability of using the proposed model to describe the luminance of FEEL by linking the four parameters obtained from independent experiments. The highest efficiency of FEEL is achieved presumably due to the reducing glow excitation of the nitrogen molecules as well as collisions encountered by the energetic electrons along the path across the space between cathode and anode. As a result, higher electron energy is preserved before landing on the phosphor coated on the anode to result in higher lighting efficacy.
Previously, fluorine-doped tin oxide (FTO) had been used as the cathode electrode of the FEEL devices due to its transparent and conductive characteristics. Nevertheless, the requirement of relatively higher discharge voltage, presumably resulting from lower secondary electron emission coefficient ion-bombardment damage, have hindered the realization of the FEEL devices for practical use. Hence, developing protective layers capable of lowering the required discharge voltage and providing more robust endurance to ion-bombardment is necessary. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al2O3/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. Our results show that, under the typical operation conditions of FEEL devices, the γ values for FTO, Al2O3/FTO, and MgO/FTO are 0.193, 0.263, and 0.396, respectively. The larger γ value obtained for MgO consistently accounts for both the significant reduction in breakdown voltage and marked enhancement in lighting efficacy and device lifetime.

中文提要 i
英文提要 iii
致謝 vii
目錄 viii
圖目錄 x
表目錄 xiii
符號說明 xiv

第一章 緒論 1.
1.1 光源的發展與介紹 1.
1.2 新型平面電子發射光源 2.
1.3 研究動機 6.

第二章 平面電子發光源之基本理論 7.
2.1 氣體放電原理 7.
2.1.1氣體放電介紹 7.
2.1.2湯生放電特性 11.
2.1.3輝光放電特性 27.
2.2 螢光粉基本特性介紹 30.
2.2.1螢光材料發光原理32.
2.2.2硫化鋅螢光粉發展歷史 33.
2.2.3硫化鋅(ZnS)螢光粉 34.
2.3 陰極電極材料 35.
2.3.1保護材料 35.
2.3.2氧化鎂結構與特性 35.
2.3.3氧化鋁結構與特性 37.
2.4 氮氣放射光譜 38.
2.5 FEEL發光機制 42.

第三章 元件製作與實驗方法 43.
3.1 實驗材料 43.
3.1.1元件陰陽電極 43.
3.1.2元陽極的螢光粉 43.
3.2 儀器與設備 44.
3.2.1操作儀器 44.
3.2.2分析儀器 46.
3.3 元件製作流程 48.
3.4 FEEL元件量測與實驗方法 51.
3.4.1元件量測前處理 51.
3.4.2發光元件量測流程 52.
3.4.3光放射光譜量測架構 53.
3.4.4 Paschen curve特性量測方式 54.

第四章 平面電子發射光源發光特性 56.
4.1 平面電子發射光源電極結構特性 56.
4.2 氣體放電管發光特性 60.
4.2.1氮氣填充的氣體放電管發光特性 61.
4.2.2不同氮氣壓力的放射光譜特性 62.
4.3 平面電子發射光源發光特性 71.
4.3.1不同氮氣壓力的放射光譜特性 71.
4.4 帕邢曲線特性與二次電子係數 77.
4.4.1 FTO材料的二次電子係數 77.
4.4.2不同陰極材料的帕行曲線與二次電子係數 79.
4.5 平面電子發射光源之電光轉換模型 84.
4.5.1電光轉換模型 85.

第五章 總結 93.
5.1 結論 93.

第六章 參考文獻 95.

簡歷 103.

[1] T. Jüstel, H. Nikol, and C. Ronda, “New Developments in the Field of Luminescent Materials for Lighting and Displays”, (Angewandte Chemie International Edition, WILEY-VCH Verlag GmbH, 1998).
[2] M. Ilmer, R. Lecheler, H. Schweizer, and M. Seibold, “37.1: Invited Paper: Hg-free Flat Panel Light Source PLANON- a Promising Candidate for Future LCD Backlights”, SID Symposium Digest of Technical Papers 31, pp. 931-933 (2000).
[3] U. Kogelschatz, “Excimer lamps: history, discharge physics and industrial applications”, Proceedings of SPIE 5483, pp. 272-286 (2004).
[4] A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: a critical review”, Solid-State Electronics 45, pp. 963-976 (2001).
[5] G. G. Lister, J. E. Lawler, W. P. Lapatovich, and V. A. Godyak, “The physics of discharge lamps”, Reviews of Modern Physics 76, 541 (2004).
[6] K. W. Park, H. S. Hwang, M. H. Han, H. K. Baik, and K. M. Song, “Improvement of the vacuum ultraviolet efficiency of low pressure Xe discharge by nitrogen admixture”, Applied Physics Letters 92, pp. 061502-061503 (2008).
[7] J. P. Boeuf, “Plasma display panels: physics, recent developments and key issues”, Journal of Physics D: Applied Physics 36, pp. 53-79 (2003).
[8] 藍永強,鍾岳宏,徐兆鋐,張德安,柳克強,「電漿科學與平面顯示器」,物理雙月刊,第28卷,第2期,452-465頁 (2006).
[9] Kazuyuki Hasegawa, Kaname Mizokami, Yoshinao Oe, Masaki Aoki, “PLASMA DISPLAY PANEL”, United States Patent, 7391156 B2 (2008).
[10] R. Meyer, Eurodisplay Workshop Digest, 56 (1993).
[11] C. A. Spindt, “A thin-film field-emission cathode”, Journal of Applied Physics 39, pp. 3504-3505 (1968).
[12] Y. Saito, S. Uemura and K. Hamaguchi, “Cathode ray tube lighting elements with carbon nanotube field emitters”, Japanese Journal of Applied Physics 37, pp. 346-348 (1998).
[13] 李家宏,「平面電子發射光源之特性與發光機制探討」,國立交通大學,博士論文,民國100年。
[14] 關旻宗,「表面導電電子發射顯示器簡介」,電子與材料雜誌,第27期,37-44頁 (2005)。
[15] M. Itoh, and L. Ozawa, “Cathodoluminescent phosphors”, Annual Reports Section "C" (Physical Chemistry) 102, pp. 12-42 (2006).
[16] L. Ozawa, and M. Itoh, “Cathode ray tube phosphors”, Chemical Reviews 103, pp. 3835-3855 (2003).
[17] W.Sun, M. A.Morrison, W. A. Isaacs, W. K. Trail, D. T. Alle, R. J. Gulley, M. J. Brennan, S. J. Bukman, “Detailed theoretical and experimental analysis of low-energy electron-N2 scattering”, Physical review A 52, pp. 1229-1256 (1995).
[18] H. S. UHM, E. H. Choi, G. Cho, K. W. Whang, “Electrical Breakdown Voltage In a Mixed Gas”, Japanese Journal of Applied Physics 40, pp. 295-297 (2001).
[19] E. Gargioni, B. Grosswendt, “Electron scattering from argon: Data evaluation and consistency”, Review of Modern Physics 80, pp. 451-480 (2008).
[20] J.-Y. Li, S.-P. Chen, C.-H. Li, Y.-P. Lin, Y.-I. Chou, M.-C. Liu, P.-H. Wang, H.-K. Zeng, T.-C. Hsieh, and J.-Y. Juang, “A lighting mechanism for flat electron emission lamp”, Applied Physics Letters 94, pp. 091501-091503 (2009).
[21] J. Y. Li, M. C. Liu, Y. P. Lin, S. P. Chen, T. C. Hsieh, P. H. Wang, C. L. Chiang, M. S. Jeng, L. L. Lee, H. K. Zeng and J. Y. Juang, “A Lighting Mechanism for Flat Electron Emission Lamp”, Cathodoluminescence ed, Naoki Yamamoto (Croatia) InTech, pp. 305-24 (2012).
[22] 劉旻忠,江昌霖,李家宏,李中裕,王博弘,林依萍,陳世溥,「新型類氣體放電燈-平面電子發射光源」,真空科技,第26卷,第2期,452-465頁 (2013).
[23] A. Von Engel, Ionized gases (AIP Press, Woodbury, NY, 1994).
[24] M. J. Druyvesteyn, and F. M. Penning, “The Mechanism of Electrical Discharges in Gases of Low Pressure”, Reviews of Modern Physics 12, 87 (1940).
[25] E. Nasser, Fundamentals of gaseous ionization and plasma electronics, Wiley-Interscience, New York (1971).
[26] J. R. Roth, “Industrial plasma engineering, vol. 1, Principles”, Institute of Physics Publishing, Bristol, Philadelphia, (1995).
[27] A. Von Engel, Electric plasmas : their nature and uses, Taylor & Francis Ltd., London, (1983).
[28] 康仕政,「單級高功因電子式安定器之研製」,國立成功大學,碩士論文,民國92年。
[29] A. M. Howatson, An introduction to gas discharges, Pergamon, 2nd edition (1965).
[30] Brain Chapman, “Glow discharge processes : sputtering and plasma etching”, Wiley-Interscience (1980).
[31] A. L. Ward, “Effect of space charge in cold-cathode gas discharges”, Phys. Rev. 112, pp. 1852-1857 (1958).
[32] A. L. Ward, “Calculations of cathode-fall characteristics”, Journal of Applied Physics 33, pp. 2789-2794 (1962).
[33] Y. P. Raizer, Gas discharge physics, Springer-Verlag, Berlin (1991).
[34] E. Nasser, Fundamentals of gaseous ionization and plasma electronics (Wiley-Interscience, New York, 1971).
[35] 徐學基,諸定昌,「氣體放電物理」,復旦大學出版社 (1995).
[36] Cobine, James Dillon, Gaseous conductors, Dover Publications, New York (1958).
[37] M. A. Lieberman and A. J. Lichtenberg, “Principles of plasma discharges and materials processing”, John Wiley & Sons, Inc.(2005).
[38] Motoshige Yumoto, Yoshitaka Kuroda, Takao Sakai, “Electron energy distribution of glow-like discharge in nitrogen at very high E/n conditions”, Journal of Physics D: Applied Physics 24, pp. 1594-1600 (1991).
[39] J. S. Townsend, Electricity in gases, Oxford, clarendon Press (1915).
[40] Essmaer Nasser,“Fundamentals of Gaseous Ionization and plasma Electronics”, Wiley-Interscience, New York (1971).
[41] Rakhwan Kim, Younghyun Kim, Jinhui Cho, and Jong-Wan Park, “Luminous efficiency and secondary electron emission characteristics of alternating current plasma display panels with MgO-SrO-CaO protective layers”, Journal of Vacuum Science & Technology A 18, pp. 2493-2496 (2000).
[42] H. Uchiike, K. Miura, N. Nakamura, T. Shinoda, and Y. Fukushima, “Secondary electron emission characteristics of dielectric materials in AC-operated plasma display panels” IEEE Trans. Electron Devices 23, pp. 1211-1217 (1976).
[43] K. Ul'yanov, “The Runaway of Electrons and the Formation of Beams in Glow Discharges”, in High Temperature(Springer Science & Business Media B.V., 2005), pp. 641-652.
[44] B. M. Jelenkovicacute, and A. V. Phelps, “Excitation of N2 in dc electrical discharges at very high E/n”, Physical Review A 36, pp. 5310-5326 (1987).
[45] A. V. Phelps, B. M. Jelenkovicacute, and L. C. Pitchford, “Simplified models of electron excitation and ionization at very high E/n”, Physical Review A 36, pp. 5327-5336 (1987).
[46] G. G. Lister, “Low-pressure gas discharge modelling”, Journal of Physics D: Applied Physics 25, pp. 1649-1680 (1992).
[47] M. A. Folkard, and S. C. Haydon, “Experimental investigations of ionization growth in nitrogen. I”, Journal of Physics B: Atomic and Molecular Physics 6, 214 (1973).
[48] G. Auday, P. Guillot, J. Galy, and H. Brunet, “Experimental study of the effective secondary emission coefficient for rare gases and copper electrodes”, Journal of Applied Physics 83, pp. 5917-5921 (1998).
[49] H. Oechsner, “Electron yields from clean polycrystalline metal surfaces by noble-gas-ion bombardment at energies around 1 keV”, Physical Review B 17, pp. 1052-1056 (1978).
[50] H. D. Hagstrum, “Auger ejection of electrons from molybdenum by noble gas ions”, Physical Review 104, pp. 672-683 (1956).
[51] E. V. Alonso, R. A. Baragiola, Ferr, oacute, J. n, M. M. Jakas, and A. Oliva-Florio, “Z1 dependence of ion-induced electron emission from aluminum”, Physical Review B 22, pp. 80-87 (1980).
[52] D. B. Medved, P. Mahadevan, and J. K. Layton, “Potential and Kinetic Electron Ejection from Molybdenum by Argon Ions and Neutral Atoms”, Physical Review 129, 2086 (1963).
[53] R. J. Beuhler, and L. Friedman, “Model of secondary electron yields from atomic and polyatomic ion impacts on copper and tungsten surfaces based upon stopping‐power calculations” Journal of Applied Physics 48, pp. 3928-3936 (1977).
[54] M. J. Druyvesteyn, and F. M. Penning, “The mechanism of electrical discharges in gases of low pressure”, Review of Modern Physics 12, pp. 87-176 (1940).
[55] G. Auday, P. Guillot, and J. Galy, “Secondary emission of dielectrics used in plasma display panels”, Journal of Applied Physics 88, pp. 4871-4874(2000).
[56] Y. Motoyama, and F. Sato, “Calculation of secondary electron emission yield γ from MgO surface”, , IEEE Transactions on Plasma Science 34, pp. 336-342 (2006).
[57] B. L. Henke, J. A. Smith, and D. T. Attwood, “0.1--10-keV x-ray-induced electron emissions from solids-Models and secondary electron measurements”, Journal of Applied Physics 48, pp. 1852-1866 (1977).
[58] Paul Goldberg, Luminescence of inorganic solids, Academic Press, New York (1966).
[59] L. Ozawa, Cathodoluminescence and Photoluminescence, Theory and practical application (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2007).
[60] S. O. Kasap, “Optoelectronics and Photonics:Principles and Practices”, (Upper Saddle River, N.J. : Prentice Hall : Pearson Education, cop. 2001), p121.
[61] G. Blass, and B. C. Grabmaier, “Luminescent Materials”, (Springer Verlag, Berlin Heidelberg, Germany, 1994).
[62] S. Shionoya, S. Shionoya, W. M. Yen (Eds.), “Phosphor handbook”, (CRC Press LLC, New York, 1999).
[63] D. R. Vij, and N. singh, “Luminescent and Related Properties of II-VI semiconductors”, Nova Science Publishers (1998).
[64] 唐自標,「硫化鋅系螢光材料的製備與其發光特性之研究」,大同工學院材料工程研究所,博士論文,民國87年。
[65] D.R.Vij, and N. Singh, ”Luminescence of Inorganic Solids”, Academic Press, p.207 (1966).
[66] H. W. Leverenz, “Luminescence of Solids”, John Wiley & Sons, New York (1950).
[67] 楊英俊,「我國電子工業螢光材料之應用現況」,材料與社會,第70期,民國81年。
[68] Romesh C. Sharma, and Y. Austin Chang, “Thermodynamic analysis and phase equilibria calculations for the Zn-Te, Zn-Se and Zn-S systems”, J. Crystal Growth 88, pp.193-204 (1988).
[69] A. H. Kitai, “Solid State Luminescence”, Chapman&Hall, Lomdonp, U.K. (1993).
[70] Chung-Hoo Park, Joon-Young Choi, Min-Suk Choi, Young-Kee Kim, Ho-Jun Lee, Surface & Coatings Technology 197, pp. 223–228 (2005).
[71] Eun-Ha Choi, Hyun-Joo Oh, Young-Guon Kim, Jae-Jun Ko, Dae-Il Kim, Guangsup Cho, Guang-Sup Cho, Jae-Yong Lim, Jin-Goo Kim, “Measurement of secondary electron emission coefficient of MgO protective layer with various crystallinities”, Japan Journal of Applied Physics 37, pp.7015-7018 (1998).
[72] 王兆祥,“The Structural , Magnetic and Electrical Properties of Fe-Mg-O Thin Film on MgO(100) or STO(100) Substrates”, 國立中正大學物理研究所,碩士論文,民國94年。
[73] 李正中,「薄膜光學與鍍膜技術」,藝軒圖書出版社(第五版),民國95年。
[74] Eun-Ha Choi, Jae-Yong Lim, Young-Guon Kim, Jae-Jun Ko, Dae-Il Kim, Choon-Woo Lee, Guang-Sup Cho, “Secondary electron emission coefficient of a MgO single crystal”, Journal of Applied Physics 86, pp. 6525-6527 (1999).
[75] 吳濟宇,「陰極材料對平面電子發射光源元件之影響」,中原大學,碩士論文,民國99年。
[76] 盧志軒,「利用電子束蒸鍍在ZnO/Glass上沉積氧化鋁薄膜以改善表面聲波元件之特性」,大同大學,碩士論文,民國99年。
[77] R. Cueff, G. Baud, M. Benmalek, J. P. Besse, J. R. Butruille, H. M. Dunlop, and M. J acquet, “Characterization and adhesion study of thin alumina coatings sputtered on PET”, Thin Solid Films 270, pp. 230-236 (1995).
[78] R. Cueff, G. Baud, M. Benmalek, J.P. Besse, J.R. Butruille, and M.Jacquet, “X-ray photoelectron spectroscopy studies of plasma-modifier PET surface and alumina/PET interface”, Applied Surface Science 115, pp. 292-298 (1997).
[79] F. Fietzke, K. Goedicke, and W. Hempel, “The deposition of hard crystalline Al2O3 layers by means of bipolar pulsed magnetron sputtering”, Surface and Coatings Technology 86-87, pp. 657-663 (1996).
[80] 倪簡白,「氮氣光譜之研究Ⅰ: C3Πu-X1Σg+及a1Πg- X1Σg+系統」,國立中央大學,博士論文,民國99年。
[81] G. Herzberg, J. W. T. Spink and F.R.S.C. Spectra of Diaotmic Molecules, pp. 92-152 (1977).
[82] R. W. B. PEARSE and A. G. Gayoon, “The Identification of Molecular Spectra”, pp. 217-216 (1976).
[83] A. V. Phelps, “Abnormal glow discharges in Ar: experiments and models”, Plasma Sources Science and Technology 10, pp. 329-343 (2001).
[84] S. C. Haydon, and O. M. Williams, "Experimental investigations of ionization growth in nitrogen. II," Journal of Physics B: Atomic and Molecular Physics 6, 227 (1973).
[85] K. Sooklal, B. S. Cullum, S. M. Angel, and C. J. Murphy, “Photophyscial properties of ZnS Nanoclusters with Spatially Localized Mn2+”, Journal of Physical Chemistry 100, pp. 4551-4555 (1996).
[86] H. W. Leverenz, “An Introduction to Luminescence of Solids”, John Wiley & Sons, New York (1950).
[87] R. N. Bhargave, D. Gallagher, X. Hong, and A. Nurmikko, “Optical Properties of Manganese-Doped Nanocrystals of ZnS”, Physical Review Letters 72, pp. 416-419 (1994).
[88] C. L. Chiang, H. K. Zeng, C. H. Li, J. Y. Li, S. P. Chen, Y. P. Lin, T. C. Hsieh, and J. Y. Juang, “Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp”, AIP ADVANCES 6, pp. 015317-1-8 (2016).
[89] 陳昱霖,「石榴石(Y3Al5O12)螢光體之合成與性質研究」,國立成功大學材料科學及工程學系,碩士論文,民國90年。
[90] 陳怡冰,「鹼土硫化物螢光粉之新穎合成與發光特性之研究」,國立交通大學應用化學系,碩士論文,民國90年。
[91] 邱冠鈞,「平面電子發射光源之氣體放電特性研究」,中原大學電子工程學系,碩士論文,民國99年。
[92] Sang Jik Kwon and Chan Kyu Jang, “Effect of base vacuum level on plasma display panel discharge characteristics and efficacy”, Japanese Journal of Applied Physics 45, pp. 804-809 (2006).
[93] Z. Wron’ ski, “Dissociation of nitrogen in the plasma-cathode interface of glow discharges”, Vacuum 78, pp. 641-647 (2005).
[94] A. S. da Silva Sobrinho, N. Schu¨hler, J. E. Klemberg-Sapieha, M. R. Wertheimer, M. Andrews, and S. C. Gujrathi, “Plasma-deposited silicon oxide and silicon nitride films on poly(ethylene terephthalate): A multitechnique study of the interphase regions”, Journal of Vacuum Science & Technology A 16, pp.2021-2030 (1998).
[95] Walkowicz, “On the mechanisms of diode plasma nitriding in N2-H2 mixtures under DC-pulsed substrate biasing”, Surface and Coatings Technology 174-175, pp.1211-1219 (2003).
[96] Matsuzuki Y, Suzuki N, Hirayama T, “Rate of Production of Water Vapour in Low-Power, High-Repetition-Rate Discharge Cleaning”, Japanese Journal of Applied Physics 25, pp. 253-257 (1986).
[97] 楊明輝,「透明導電薄膜」,藝軒圖書出版社(第五版),民國98年。
[98] C. H. Li, M. C. Liu, C. L. Chiang, J. Y. Li, S. P. Chen, T. C. Hsieh, Y. I. Chou, Y. P. Lin, P. H. Wang, M. S. Chun, H. K. Zeng and J. Y. Juang, “Discharge and photo-luminance properties of a parallel plates electron emission lighting device”, Optics Express 19, pp. A51-56 (2011).
[99] 陳秉豪,「氧化物薄膜對平面電子發射光源特性之研究」,中原大學電子工程學系,碩士論文,民國103年。
[100] Y. Cheng, and O. Zhou, “Electron field emission from carbon nanotubes”,Comptes Rendus Physique 4, pp. 1021-1033 (2003).
[101] S. C. Tseng, C. H. Li, Y. Y. Lin, C. H. Tsai, Z. P. Wang, K. C. Leou, C. H. Tsai, S. P. Chen, J. Y. Lee, and B. C. Yao, “Field emission characteristics of a single free standing carbon nanotube with gate electrode”, Diamond and Related Materials 14, pp. 2064-2068 (2005).
[102] Z. Donko, P.Hartmann, K.Kutasi, “On the reliability of low-pressure dc glow discharge modelling”, Plasma Sources Science and Technology 15, pp. 178-186 (2006).
[103] Y. Sosov, and C. E. Theodosiou, “Determination of electric field-dependent effective secondary emission coefficients for He/Xe ions on brass”, Journal of Applied Physics 95, pp. 4385-4388 (2004).
[104] T. J. Vink, A. R. Balkenende, R. G. F. A. Verbeek, H. A. M. van Hal, and S. T. de Zwart, “Materials with a high secondary-electron yield for use in plasma displays”, Applied Physics Letters 80, pp.2216-2218 (2002).
[105] R. C. Alig, and S. Bloom, “Secondary‐electron‐escape probabilities”, Journal of Applied Physics 49, pp. 3476-3480 (1978).
[106] Jun Seok Oh and Eun Ha Choi, “Ion-Induced Secondary Electron Emission Coefficient (γ) from MgO Protective Layer with Microscopic Surface Structures in Alternating Current Plasma Display Panels”, Japanese Journal of Applied Physics 43, pp. L1154-1155 (2004).
[107] Jae Yong Lim, Jun Soek Oh, Byung Doc Ko, Jae Won Cho, Seung Oun Kang, Guangsup Cho, Han Sup Uhm, and Eun Ha Choi, “Work function of MgO single crystals from ion-induced secondary electron emission coefficient”, Journal of Applied Physics 94, pp.764-769 (2003).
[108] A. V. Phelps and Z. L. Petrovic, “Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons”, Plasma Sources Science and Technology 8, pp. R21-R44 (1999).
[109] Donk, oacute, Z., K. zsa, R. C. Tobin, and K. A. Peard, “Modeling and measurements on an obstructed glow discharge in helium”, Physical Review E 49, pp. 3283-3289 (1994).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top