|
[1] Jim Agler, Fang-Bo Yeh & Nicholas J. Young. (2003). Realization of functions into the symmetrised bidisc,Operator Theory: Advances and Applications, Vol 143, pp. 1-37. [2] Jim Agler & Nicholas J. Young. (1999). A Commutant Lifting Theorem for a Domain in C2and SpectralInterpolation. Journal Functional Analysis, Vol 161, pp. 452-477. [3] Jim Agler & Nicholas J. Young, (2000). The two-point spectral Nevanlinna-Pick problem. Integral Equationsand Operator Theory, Vol 37, pp. 375385. [4] Jim Agler & Nicholas J. Young. (2001). A Schwarz Lemma for the symmetrised bidisc. Bulletin of the LondonMathematical Society, Vol 33, pp. 175-186. [5] Jim Agler & Nicholas J. Young. (2004). The hyperbolic geometry of the sym-metrized bidisc. Appeared in theJournal of Geometric Analysis, Vol 14, pp. 375-403. [6] Jim Agler & Nicholas J. Young. (2004). T he two-by-two spectral Nevanlinna-Pick problem. Transactions ofthe American Mathematical Society, Vol.356, pp. 573-585. [7] Jim Agler & Nicholas J. Young, (2006). The complex geodesics of the symmetrized bidisc. International Journal of Mathematics, Vol 17, pp. 375-391. [8] Hari Bercovici. (2003). Spectral versus classical Nevanlinna-Pick interpolation in dimension two. Electronic Journal of Linear Algebra, Vol 10, pp. 60-64. [9] Hari Bercovici, Ciprin Foias & Allen Tannenbaum (1989). Spectral radius interpolation and robust control. Proceedings of the 28th Conference on Decision and Control, Tampa, Florida. [10] J. C. Boyle, B. Francis & A. Tannenbaum. (1992). Feedback Control Theory, Macmillan Publishing Compang. [11] Po-Jen Chen. (July, 2006). The Γ2-inner solution of Three-point Spectral Nevanlinna-Pick Interpolation Problem :2 × 2 case , Master Thesis, Department of Mathematics, Tunghai University, Taiwan. [12] T. Constantinescu. (1996) Schur parameters, factorization and dilation problems. Basel: Birkhauser Verlag. [13] Constantin Costara. (2005). On the spectral Nevanlinna-Pick problem, Studia Math, Vol 170, pp. 2355. [14] Sean Dineen. (1989). The Schwarz lemma, Oxford University Press. [15] P. Dorato, L. Fortuna & G. Muscato (1992) Robust Control for Unstructured Perturbations An Introduction. Springer-Verlag. [16] Herbert Federer (1969). Geometric Measure Theory. New-York: Springer-Verlag. [17] Jyun-Tswun Lin. (June, 1994). Parametic Nevanlinna-Pick Theorey, Master Thesis, Department of Mathematics, Tunghai University, Taiwan. [18] Cheng-Tsai Lin. (July, 2001). Schwarz Lemma On Symmetrized Bidisc, Master Thesis, Department of Mathematics, Tunghai University, Taiwan. [19] Tien-De Lin, (July, 2001). Spectral NevanlinnaPick Interpolation on sym-metrized bidisc, Master Thesis,Department of Mathematics, Tunghai University, Taiwan. [20] Chun-Ming Lin. (July, 2003). Realization of Spectral Nevanlinna-Pick Interpolation on Symmetrized Bidisc, Master Thesis, Department of Mathematics, Tunghai University, Taiwan. [21] Donald E. Marshall. (1974). An elememtary proof of the Pick-Nevanlinna interpolation theory. Michigan Math. J., Vol 21, pp. 219-223. [22] David Ogle & Nicholas J. Young. (2001). The Parrot problem for singular values, Operator Theory: Advances and Applications, Vol 124, pp. 481-503. [23] J. R. Partington.(1997). Interplation Identication and Sampling, Vol.17 of LMS Monograph, Newseries. Oxford: Oxford University Press. [24] Allen Tannenbaum. (1987). Spectral Nevanlinna-Pick interpolation theory and robust stabilization. Proceedings of the 28th Conference on Decision and Control, Los Angeles, CA.
|