跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊玉龍
研究生(外文):Yu-Lung Yang
論文名稱:頻譜與古典插值函數
論文名稱(外文):Spectral versus Classical Nevanlinna-Pick Interpolation Functions
指導教授:黃皇男黃皇男引用關係
指導教授(外文):Huang-Nan Huang
學位類別:碩士
校院名稱:東海大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:52
中文關鍵詞:古典 Nevanlinna-Pick定理插值問題頻譜插值問題對稱雙盤對稱多盤體積表面積。
外文關鍵詞:classical Nevanlinna-Pick Theoreminterpolation-problemspectral Nevanlinna-Pick problemsymmetrized-bidiscsymmetrized-n-discvolumesurface area.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於古典:Nevanlinna-Pick:定理(Classical Nevanlinna-Pick Theorem) 在控制理論上扮演著十分重要角色,在此整理並介紹三種對此定理值得一看的的證明。進一步由矩陣頻譜半徑的插值問題 (Spectral Nevanlinna-Pick Problem) 討論一些對稱雙盤 (symmetrized bidis)上的插值問題及相關性質,並計算對稱雙盤(參)圓的體積及表面積,並提供對稱多盤 (symmetrized n-disc) 體積求法的積分形式。
Because The classical Nevanlinna-Pick Theorem plays a very important role in the robust control theory, we like to introduce three worth-reading proofs of the theorem. Furthermore we will develop into the area of spectral Nevanlinna-Pick problem: discuss some interpolation problems and properties on the symmetrized-bidisc , and calculate the volume and surface area of symmetrized-bidisc and symmetrized-tridisc, and gives the general integral form to represent the volume of symmetrized-n-disc.
Chinese abstract i
Abstract ii
Notations iii
Contents v
Chapter 1 Introduction
1.1 From Robust control to Nevanlinna-Pick problem 1
1.2 Motivation and organization 4
Chapter 2 Preliminaries
2.1 Basic preliminaries 5
2.2 Preliminaries about function analysis 7
2.3 Preliminaries about spectral Nevanlinna-Pick problem and Γn 14
Chapter 3 Main results
3.1 Three worth-reading proofs of Nevanlinna-Pick Theorem 24
3.1.1 A Proof with Fenyers array 24
3.1.1 A Proof from Donald E. Marshall 32
3.1.1 A Proof from J. R. Partington 36
3.2 Remarks on the propertities of Γn and some interpolation problem 38
3.2.1 Remarks on the propertities of Γn 38
3.2.1 N points interpolation problem 42
3.3 The Volume and Surface Area of Symmetrized Polydiscs 45
Chapter 4 Conclusion 50
Reference 51
[1] Jim Agler, Fang-Bo Yeh & Nicholas J. Young. (2003). Realization of functions into the symmetrised bidisc,Operator Theory: Advances and Applications, Vol 143, pp. 1-37.
[2] Jim Agler & Nicholas J. Young. (1999). A Commutant Lifting Theorem for a Domain in C2and SpectralInterpolation. Journal Functional Analysis, Vol 161, pp. 452-477.
[3] Jim Agler & Nicholas J. Young, (2000). The two-point spectral Nevanlinna-Pick problem. Integral Equationsand Operator Theory, Vol 37, pp. 375385.
[4] Jim Agler & Nicholas J. Young. (2001). A Schwarz Lemma for the symmetrised bidisc. Bulletin of the LondonMathematical Society, Vol 33, pp. 175-186.
[5] Jim Agler & Nicholas J. Young. (2004). The hyperbolic geometry of the sym-metrized bidisc. Appeared in theJournal of Geometric Analysis, Vol 14, pp. 375-403.
[6] Jim Agler & Nicholas J. Young. (2004). T he two-by-two spectral Nevanlinna-Pick problem. Transactions ofthe American Mathematical Society, Vol.356, pp. 573-585.
[7] Jim Agler & Nicholas J. Young, (2006). The complex geodesics of the symmetrized bidisc. International Journal of Mathematics, Vol 17, pp. 375-391.
[8] Hari Bercovici. (2003). Spectral versus classical Nevanlinna-Pick interpolation in dimension two. Electronic Journal of Linear Algebra, Vol 10, pp. 60-64.
[9] Hari Bercovici, Ciprin Foias & Allen Tannenbaum (1989). Spectral radius interpolation and robust control. Proceedings of the 28th Conference on Decision and Control, Tampa, Florida.
[10] J. C. Boyle, B. Francis & A. Tannenbaum. (1992). Feedback Control Theory, Macmillan Publishing Compang.
[11] Po-Jen Chen. (July, 2006). The Γ2-inner solution of Three-point Spectral Nevanlinna-Pick Interpolation Problem :2 × 2 case , Master Thesis, Department of Mathematics, Tunghai University, Taiwan.
[12] T. Constantinescu. (1996) Schur parameters, factorization and dilation problems. Basel: Birkhauser Verlag.
[13] Constantin Costara. (2005). On the spectral Nevanlinna-Pick problem, Studia Math, Vol 170, pp. 2355.
[14] Sean Dineen. (1989). The Schwarz lemma, Oxford University Press.
[15] P. Dorato, L. Fortuna & G. Muscato (1992) Robust Control for Unstructured Perturbations An Introduction. Springer-Verlag.
[16] Herbert Federer (1969). Geometric Measure Theory. New-York: Springer-Verlag.
[17] Jyun-Tswun Lin. (June, 1994). Parametic Nevanlinna-Pick Theorey, Master Thesis, Department of Mathematics, Tunghai University, Taiwan.
[18] Cheng-Tsai Lin. (July, 2001). Schwarz Lemma On Symmetrized Bidisc, Master Thesis, Department of Mathematics, Tunghai University, Taiwan.
[19] Tien-De Lin, (July, 2001). Spectral NevanlinnaPick Interpolation on sym-metrized bidisc, Master Thesis,Department of Mathematics, Tunghai University, Taiwan.
[20] Chun-Ming Lin. (July, 2003). Realization of Spectral Nevanlinna-Pick Interpolation on Symmetrized Bidisc, Master Thesis, Department of Mathematics, Tunghai University, Taiwan.
[21] Donald E. Marshall. (1974). An elememtary proof of the Pick-Nevanlinna interpolation theory. Michigan Math. J., Vol 21, pp. 219-223.
[22] David Ogle & Nicholas J. Young. (2001). The Parrot problem for singular values, Operator Theory: Advances and Applications, Vol 124, pp. 481-503.
[23] J. R. Partington.(1997). Interplation Identication and Sampling, Vol.17 of LMS Monograph, Newseries. Oxford: Oxford University Press.
[24] Allen Tannenbaum. (1987). Spectral Nevanlinna-Pick interpolation theory and robust stabilization. Proceedings of the 28th Conference on Decision and Control, Los Angeles, CA.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top