跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅際昌
研究生(外文):Luo,Ji-Chang
論文名稱:探討低層數二硫化鉬的金屬-絕緣體相變化
論文名稱(外文):Metal-insulator transition in few-layer MoS2
指導教授:簡紋濱簡紋濱引用關係
指導教授(外文):Jian,Wen-Bin
口試委員:許世英陳振芳馬遠榮邱博文
口試委員(外文):Hsu,Shih-YingChen,Jenn-FangMa,Yuan-RonChiu,Po-Wen
口試日期:2015-07-08
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:39
中文關鍵詞:二硫化鉬金屬-絕緣體相變化二維電子變程跳躍
外文關鍵詞:MoS2metal-insulator transitiontwo dimensional electronVariable range hopping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:617
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
二維材料相較於過去的三維材料,有許多新穎的物理特性與應用,舉凡奈米電子學、光學性質,皆有不同的研究發現。而二維材料中,除了石墨烯(Graphene)外,其他具有層狀結構之半導體二維材料如二硫化鉬(MoS2)、二硒化鎢(WSe2)的研究日漸受到重視。因為二硫化鉬為有能隙的半導體,使得二硫化鉬作為場效電晶體的材料時,其開關比能夠到達106-108,為好的場效電晶體元件,但其物理機制尚不清楚。
本實驗研究二硫化鉬的電性傳輸機制,二硫化鉬一般在實際情況下,電子傳輸並非有序系統下的彈道傳輸機制,須考慮半導體材料中,因聲子碰撞導致能量交換的散射問題。我們並討論二硫化鉬之厚度(層數多寡)對其電性傳輸特性的影響,包含載子遷移率、載子濃度、電導率以及電子侷限長度等。本實驗以機械剝離法、電子束微影、熱蒸鍍等標準製程,將少數層的二硫化鉬薄片製作成具場效電晶體結構之奈米元件,用低溫探測平台測量其電性、電場效應,計算其載子遷移率,並做變溫量測。我們觀察到二硫化鉬薄片之電阻隨著溫度下降而上升,呈現半導體傳輸性質,並可用Mott變程跳躍理論解釋。此外,我們發現在溫度約210 K以下,二硫化鉬有明顯的金屬-絕緣之相變化,推測與電場在某臨界值時的載子濃度有關,利用背閘極電壓控制載子濃度而發現臨界電場隨載子濃度變化。

Comparing to three-dimensional bulks, two-dimensional materials exhibit many novel physical properties and show excellently their applications in nano- and opto-electronics. In addition to graphene, other two-dimensional materials, having layered structure of semiconductor material such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), draw much attention because of the presence of indirect bandgap. The MoS2 can be used for making field-effect transistors (FETs) to give a high on/off ratio of above 106.
In this work, the electron transport in MoS2 is studied by two terminal devices with a back gating electrode. We use mechanical exfoliation, electron beam lithography and thermal evaporation to make few-layer MoS2 FET devices. From the device characterizations, we estimate the mobility, carrier concentration and localization length at different temperature range from 80 to 200 K and for MoS2 having different thickness. At a temperature higher than 200 K, the MoS2 shows an insulating to metallic phase transition. The transition could be attributed to the thermally excited carriers. On the other hand, the insulating phase appears at temperatures lower than 200 K and the insulating phase can be converted to the metallic phase by applying a back-gate voltage as well. The back gating voltage is used to increase the carrier concentration. The metallic phase was observed and the transition occurred at a conductivity very close to the ideal value of e2/h. At last, we show that the metallic phase can also be induced by applying a high electric field at zero gating voltage.

Abstract I
摘要 II
致謝 III
目錄 IV
圖目錄 V
表目錄 VII
第一章 緒論 1
第二章 文獻回顧 2
2.1 二硫化鉬結構與基本特性 2
2.2 二硫化鉬的判別 3
2.3 二硫化鉬的電荷傳輸機制 4
2.4 二維電子系統(Two-Dimensional Electron System, 2DES) 5
第三章 實驗理論 6
3.1 場效電晶體元件(Field-effect Transistor, FET) 6
3.2 變程跳躍傳輸(Variable Range Hopping, VRH) 7
3.3 金屬絕緣體相變化(Metal-Insulator Transition, MIT) 10
第四章 實驗步驟與方法 12
4.1實驗儀器 12
4.1.1低溫探測平台 12
4.1.2原子力顯微鏡(Atomic Force Microscope, AFM) 13
4.2二硫化鉬元件製程 16
4.3二硫化鉬元件室溫量測 19
4.4二硫化鉬元件變溫量測 20
第五章 結果與討論 20
5.1二硫化鉬的觀察與電流場效應 20
5.2二硫化鉬元件之電性傳輸分析 22
5.3低溫下二硫化鉬之金屬-絕緣體相變化 26
5.4二硫化鉬的臨界場與臨界電壓 30
第六章 結論 36
[參考文獻] 37

[參考文獻]
[1] C. Durand, X. Zhang, and J. Fowlkes, Journal of Vacuum Science &; Technology B 33, 02B110 (2015)
[2] S. Ghatak, A. N. Pal, and A. Ghosh, ACSNano. 5, 10 7707 (2011)
[3] A. Tarasov, S. Zhang, M. Y. Tsai, P. M. Campbell, S. Graham, S. Barlow, S. R. Marder, and E. M. Vogel, Adv. Mater. 27, 1175 (2015)
[4] J. Jeon, S. K. Jang,S. M. Jeon, G. Yoo,Y. H. Jang, J. H. Park and S. Lee, Nanoscale. 7, 1688 (2015)
[5] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, J. Appl. Phys. 101, 014507 ( 2007 )
[6] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, NatNano. 6, 147 (2011)
[7] S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013)
[8] S. L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W. W. Li, Y. F. Lin, A. A. Ferreira, and K. Tsukagoshi, Nano Lett. 13, 3546 (2013)
[9] B. Radisavljevic and A. Kis, Nano Mat. 12, 815 (2013).
[10] N. F. MOTT, Rev. Mod. Phys. 40, 40 (1968).
[11] T. Ando, Rev. Mod. Phys. 54, 2 437 (1982)
[12] T. V. Ramakrishnan, Rev. Mod. Phys. 57, 2 287 (1985)
[13] A. Punnoose and A. M. Finkel’stein, Science 310, 289 (2005)
[14] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee,G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist,V. Nicolosi, Science 331 568 (2011)
[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004)
[16] K. Cho, T. Y. Kim, W. Park, J. Park, D. Kim, J. Jang, H. Jeong, S. Hong, and T. Lee, Nano.tech. 25, 155201 (2014)
[17] H. Liu and P. D. Ye, IEEE Electron Device Lett, 33, 4 (2012)
[18] M. M. Perera, M. W. Lin, H. J. Chuang, B. P. Chamlagain, C. Wang, X. Tan, M. M. C. Cheng, D. Toma´nek, and Z. Zhou, ACSNano. 7, 5 4449 (2013).
[19] S.W. Min, H. S. Lee, H. J. Choi, M. K. Park, T. Nam, H. Kim, S Ryu and S. Im, Nanoscale. 5, 548 (2013)
[20] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACSNano. 4, 5 2695 (2010).
[21] H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, and H. Zhang, ACSNano. 7, 11 10344 (2013).
[22] H. Liu, A. T. Neal, and P. D. Ye, ACSNano. 6, 10 8563 (2012).
[23] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012)
[24] H Li, Q Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012)
[25] H Li, Z Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, small 8, 1 63 (2012)
[26] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, J. Appl. Phys. 101, 014507 (2007).
[27] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438 201 (2005).
[28] X. Du, I. Skachko, F. Duerr, A. Luican and E. Y. Andrei, Nano Lett. 462 192 (2009)
[29] H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, Nano Lett. 12, 3695 (2012)
[30] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Angew. Chem. Int. Ed. 50, 11093 (2011)
[31] S. F. Nelson, Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl Phys. Lett. 72, 1854 (1998).
[32] L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, Appl. Phys. Lett 74, 1132 (1999).
[33] 閻守勝 編著, 倪澤恩 校訂, 五南出版社 "固態物理概論".
[34] Neamen, semiconductor physics and devices basic principles, 4th ed McGrawHill, 2012.
[35] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, PNAS. 102, 30 10451 (2005)
[36] V. M. Apalkov, M. E. Raikh, 1 and B. Shapiro, Phys. Rev.Lett. 89, 1 016802 (2002).
[37] Lakeshore 公司資料 http://www.lakeshore.com/
[38] G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56 930(1986)
[39] D. Rugar, P. Hansma, Atomic force microscopy, Phys. Today 43 23 (1990)
[40] W. C. Chen, Dynamic Simulation and Vibration Analysis od the Atomic Force Microscope by Finite Element Method, National Taiwan University of Science and Techology, 2005.
[41] S. S. Chyou, The morphology of DPPC/DOPC bilayers on mica and the substrate effect: an AFM study, National Central University, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top