跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/12/02 11:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白少涵
研究生(外文):Shao Han Bai
論文名稱:治療不穩定股骨轉子間骨折之生物力學研究- 骨質疏鬆情況下利用骨水泥固定動態髖骨鏍釘及髓內鋼釘之比較
論文名稱(外文):Biomechanical Study for Treatment of Unstable Trochanteric Fractures with Osteoporotic Bone- Comparison between a PMMA Cemented DHS and an Intramedullary Device
指導教授:戴金龍戴金龍引用關係
指導教授(外文):C. L. Tai
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:122
中文關鍵詞:動態髖骨螺釘髓內鋼釘不穩定骨折骨質疏鬆有限元素分析
外文關鍵詞:Dynamic Hip Screwreconstruction nailUnstable intertrochanteric fractureosteoporosisFinite element analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:591
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
股骨轉子間骨折合併骨質疏鬆及粉碎性骨折,向來是骨科界的棘手難題。現階段治療股骨轉子間骨折的標準方法為動態髖骨鏍釘固定。但使用動態髖骨鏍釘於不穩定轉子間骨折卻常發生鏍釘穿出股骨球頭及鏍釘過度滑動等併發症。另一種常用於治療不穩定轉子間骨折的固定器是髓內鋼釘。雖然骨水泥已被廣泛應用於增進骨鏍釘的固定效果,但是過去卻甚少有文獻針對骨質疏鬆情況,以力學觀點,探討利用動態髖骨鏍釘及髓內鋼釘兩種不同固定裝置及骨水泥施用與否來治療不穩定轉子間骨折的術後力學穩定性。
方法:本研究利用有限元素分析及體外力學實驗進行模擬與測試。有限元素分析:利用人造股骨的CT影像建立不穩定轉子間股骨骨折三維有限元素模型,並量測固定器尺寸建立動態髖骨鏍釘及髓內鋼釘的實體模型,將股骨模型給予正常骨質、骨質疏鬆及骨水泥三種材料性質,邊界條件設定為單腳站立分;體外力學實驗:使用模擬不穩定轉子間股骨骨折之人造股骨分別以動態髖骨鏍釘及髓內鋼釘固定,進行靜態抗壓實驗,探討術後穩定度。
結果:有限元素分析:使用動態髖骨鏍釘之球頭於正常骨、骨質疏鬆及骨水泥三種條件下的向下垂直位移分別為7.143 mm、8.714 mm、6.889 mm;而使用髓內鋼釘的球頭向下垂直位移則分別為1.869 mm、2.207 mm、1.859 mm,兩者球頭最大的向下垂直位移量皆發生在骨質疏鬆的條件下。此外,動態髖骨鏍釘於正常骨、骨質疏鬆及骨水泥三種骨質條件下應力分別為2112 MPa、2006 MPa、2084 MPa;髓內鋼釘則分別為1444 MPa、1452 MPa、1616 MPa,使用骨水泥時,固定器應力值都有增高的現象。體外力學實驗:當負載達到 2000 N時,動態髖骨鏍釘的垂直向下位移量為 11.3 mm,則髓內鋼釘為4.6 mm。
結論:利用髓內鋼釘治療不穩定轉子間骨折併發骨質疏鬆症,股骨球頭位移量低、股骨應力值小有較高的穩定度;此外,利用動態髖骨鏍釘,除術後穩定性較差之外,鏍釘穿出股骨球頭的機率亦較高,利用骨水泥可降低鏍釘穿出的機率,但同時會提高固定器破壞的風險。
Interochanteric fractures associated with severe osteoporosis and comminution remain a considerable challenge to orthopedic surgeon. The standard treatment of these fractures is by osteosynthesis with a dynamic hip screw (DHS). However, in unstable intertrochanteric fractures, complications of cut-out and excessive sliding of the lag screw occurred frequently. Another device frequently used to treat these unstable intertrochanteric fractures is the use of a intramedullary nail. Although PMMA bone cement has been widely applied as a secondary fixation to facilitate fracture stability, there has been few biomechanical studies regarding the significance of bone cement in unstable fracture patterns with osteoporotic bone, therefore this study was conducted to compare the biomechanical behavior between a PMMA cemented DHS and an intramedullary device in treatment of interochanteric fractures associated with severe osteoporosis.
Methods: Both finite element analysis (FEA) and In vitro experiment were conducted in current study. For FEA study, CT images obtained from standardized composite femur was used to create 3-D finite element model simulating unstable interochanteric fracture. The solid model and finite element model of DHS and intramedullary device were created by actual measurement. Loading condition simulating single leg stance was performed. Femora with three different degree of density (normal, osteoporotic and augmented with cemented) were compared. For experiment study, postoperative stability for femora with unstable interochanteric fracture treated with DHS and intramedullary device were compared.
Results: The results of finite element analysis indicated that, for femur treated with DHS, the maximal femoral head displacement for normal, osteoporotic and cemented femur were 7.143 mm, 8.714 mm and 6.889 mm, respectively; whereas for femur implanted with intramedullary device, the maximal femoral head displacement for normal, osteoporotic and cemented femur were 1.869 mm, 2.207 mm and 1.859 mm, respectively. Regardless of DHS or intramedullary device, unstable interochanteric fractures associated with severe osteoporosis exhibited the highest femoral head displacement. In addition, the maximal von Mises stress of DHS device for normal, osteoporotic and cemented femur were 2,112 MPa, 2,006 MPa and 2,084 MPa, respectively; whereas for femur implanted with intramedullary device, the maximal von Mises stress of intramedullary device for normal, osteoporotic and cemented femur were 1,444, 1,452, and 1,616 MPa, respectively. Regardless of DHS or intramedullary device, the application of bone cement increases the von Mises stress of fixation device. Furthermore, the results of in vito experiment indicated, under 2000 N compressive loading, the vertical displacement of femoral head for femora implanted with DHS and intramedullary device are 11.3 mm and 4.6 mm, respectively
Conclusion: The intramedullary device may be suitable to treat unstable interochanteric fractures associated with severe osteoporosis due to the lower displacement and stresses. DHS treated femur exhibits a higher risk of screw cut-out. The application of bone cement reduces the risk of screw cut-out, however, it increases the risk of implant damage.
指導教授推薦書
口試委員審定書
國家圖書館授權書 iii
長庚大學授權書 iv
誌謝 v
中文摘要 vi
Abstract viii
目 錄 x
圖目錄 xiii
表目錄 xx
第一章 緒論 1
1-1 引言 1
1-2 研究背景 3
1-3研究動機 6
1-4研究目的 6
第二章 基本理論 7
2-1股骨解剖構造簡介 7
2-2股骨轉子間骨折 9
2-3股骨轉子間骨折治療之沿革 14
2-4 文獻回顧 20
2-5 股骨轉子間骨折有限元素模型 25
第三章 研究方法 28
3-1研究流程 28
3-2 第一部分:三維有限元素分析 30
3-2-1影像輪廓擷取 30
3-2-2 模型的建立 32
3-2-3三維有限元素模型建立 35
3-2-4有限元素模型之收斂測試 36
3-2-5材料性質 38
3-2-6邊界條件 39
3-2-7接觸條件設定 40
3-3第二部分:生物力學實驗 41
3-3-1 研究材料與設備 41
3-3-2 研究樣試準備 45
3-3-3 研究方法 50
3-3-4 數據紀錄與分析 50
第四章 結果 51
4-1 不穩定轉子間骨折之應力分析 51
4-1-1 不同骨質使用動態髖骨鏍釘之應力分析 51
4-1-2 不同骨質使用髓內鋼釘之應力分析 54
4-1-3 股骨表面應力 57
4-1-4 固定器之應力分析 61
4-1-5 骨鏍釘之應力分析 66
4-2 不穩定轉子間骨折之垂直位移分析 69
4-2-1 股骨球頭之垂直位移量 69
4-2-2 固定器之垂直位移量 71
4-3 不穩定轉子間骨折之生物力學實驗 73
第五章 討論 77
5-1 三種不同骨質之比較 77
5-2 兩固定器之比較 79
5-3 靜態抗壓實驗 82
5-4 綜合討論 83
第六章 結論 84
參考文獻 87
附錄 A 2012 中華民國醫學工程年會摘要 96

圖1-1股骨骨折的AO分類圖,A1是簡單穩定骨折;A2是不穩定和粉 碎性骨折;A3是逆行性骨折 2
圖1-2不穩定性骨折,在AO股骨骨折分類圖裡,為A3-3型態 4
圖1-3動態髖骨螺釘因支撐住固定不良導致骨板斷裂 5
圖1-4新型髓內鋼釘因骨質疏鬆而固定不完全,導致螺釘嚴重滑脫 5
圖2-1股骨解剖構造 8
圖2-2AO股骨轉子間骨折分類 12
圖2-3股骨轉子間標準骨折 12
圖2-4股骨轉子間標準骨折之病患X光照 13
圖2-5動態髖骨螺釘與髓內鋼釘之治療穩定股骨轉子間骨折X光 13
圖2-6不穩定轉子間骨折,經骨釘固定,骨釘很容易穿股骨球頭 17
圖2-7將滑動股骨鏍釘固定於股骨之外側 18
圖2-8植入骨髓內釘後,因遠端螺釘固定,導致股骨幹骨折 18
圖2-9螺釘穿出球頭,導致手術失敗 19
圖2-10因骨質疏鬆,導致斷裂面骨片過度滑動 19
圖2-11 Sitthiseripratip學者等人所建立出得股骨三維有限元素模型 26
圖2-12 Seral學者等人利用有限元素所建立出的實體模型 27
圖2-12a股骨轉子間標準的骨折型式A1.1 27
圖2-12b股骨轉子間不穩定骨折A2.1 27
圖3-1研究流程架構圖 29
圖3-2使用Amira所圈選出來股骨之輪廓外型 31
圖3-3連續堆疊完所得到的股骨輪廓模型 31
圖3-4匯入SolidWork準備作疊層拉伸之股骨輪廓外型 33
圖3-5股骨遠端因幾何外型變化大,切片間距為0.1mm 33
圖3-6髓內鋼釘之繪出模型 34
圖3-7動態髖骨螺釘之繪出模型 34
圖3-8十節點四面體股骨實體模型 (a)動態髖骨鏍釘之股骨(b)髓內鋼釘之股骨 35
圖3-9設定邊界條件,將股骨遠端節點固定 39
圖3-10接觸條件:a.固定 b.摩擦係數= 0.3 c.摩擦係數= 0 40
圖3-11動態髖骨螺釘 41
圖3-12髓內鋼釘 42
圖3-13人造股骨 43
圖3-14 MTS雙軸材料試驗機 44
圖3-15模擬不穩定骨折之示意圖 45
圖3-16髓內鋼釘器械 – 將髓內鋼釘打入骨髓腔以固定角度方便植入近端骨釘 46
圖3-17髓內鋼釘植入圖 – 以髓內釘固定股骨球頭及X光照片 46
圖3-18動態髖骨鏍釘器械 – 將動態髖骨鏍釘鎖入骨髓腔以固定角度方便鎖定骨板 47
圖3-19 動態髖骨鏍釘植入圖 – 以動態髖骨鏍釘固定股骨球頭及X光片 47
圖3-20 人造股骨以液態的低熔點錫合金包埋 48
圖3-21抗壓測試夾具安裝 –將底部錫合金固定之試樣以虎頭鉗固定在MTS材料試驗機上 49
圖4-1使用動態髖骨鏍釘之術後前側股骨整體von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 52
圖4-2使用動態髖骨鏍釘之術後後側股骨整體von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 52
圖4-3使用動態髖骨鏍釘之術後內側股骨整體von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 53
圖4-4使用動態髖骨鏍釘之術後外側股骨整體von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 53
圖4-5使用動態髖骨鏍釘之術後近端股骨整體von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 54
圖4-6使用髓內鋼釘之術後前側股骨整體von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 55
圖4-7使用髓內鋼釘之術後後側股骨整體von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 55
圖4-8使用髓內鋼釘之術後內側股骨整體von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 56
圖4-9使用髓內鋼釘之術後外側股骨整體von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 56
圖4-10使用髓內鋼釘之術後近端股骨整體von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 57
圖4-11使用動態髖骨鏍釘之後側股骨頸von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 58
圖4-12使用髓內鋼釘之後側股骨頸von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 58
圖4-13使用動態髖骨鏍釘之內側股骨骨折處von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 59
圖4-14使用髓內鋼釘之內側股骨骨折處von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 60
圖4-15動態髖骨鏍釘之前側von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 61
圖4-16動態髖骨鏍釘之後側von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 61
圖4-17動態髖骨鏍釘之內側von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 62
圖4-18動態髖骨鏍釘之外側von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 62
圖4-19髓內鋼釘之前側von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 63
圖4-20髓內鋼釘之後側von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 64
圖4-21髓內鋼釘之內側von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 64
圖4-22髓內鋼釘折之外側von Mises應力分佈圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 65
圖4-23動態髖骨鏍釘之滑動骨釘的近端von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 66
圖4-24動態髖骨鏍釘之滑動骨釘的遠端von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 67
圖4-25髓內鋼釘之近端骨釘的前側von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 67
圖4-26髓內鋼釘之近端骨釘的後側von Mises應力分佈圖。 (a)正常骨(b)骨質疏鬆(c)骨水泥 67
圖4-27動態髖骨鏍釘之股骨球頭的垂直位移量後側圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 69
圖4-28髓內鋼釘之股骨球頭的垂直位移量後側圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 70
圖4-29動態髖骨鏍釘之垂直位移量後側圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 71
圖4-30髓內鋼釘之垂直位移量後側圖。(a)正常骨(b)骨質疏鬆(c)骨水泥 72
圖4-31靜態抗壓測試 – 動態髖骨鏍釘在抗壓測試中N/mm圖形變化 73
圖4-32靜態抗壓測試 – 動態髖骨鏍釘之股骨球頭 74
圖4-33靜態抗壓測試 – 髓內鋼釘在抗壓測試中N/mm圖形變化 75
圖4-34靜態抗壓測試 – 髓內鋼釘之股骨球頭 76
圖5-1有限元素模型分析 – 兩固定器之股骨頸的表面最大應力 78
圖5-2有限元素模型分析 – 兩固定器之股骨球頭的垂直向下位移 78
圖5-3有限元素模型分析 – 兩固定器與骨幹之接合處的最大應力值 78
圖5-4有限元素模型分析 – 兩固定器在接合處應力集中所產生之最大應力值 80
圖5-5有限元素模型分析 – 兩固定器之骨鏍釘表面最大應力 80
圖5-6有限元素模型分析 – 髓內鋼釘之近端骨釘應力集中處在不同骨質下的應力值 81
圖5-7有限元素模型分析 – 兩固定器於不同骨質下的垂直向下位移 81
圖5-8體外力學實驗 – 兩固定器之靜態抗壓之力量位移曲線 82
圖5-9有限元素模型分析–兩固定器和股骨球頭的向下垂直位移 85
圖5-10股骨球頭對固定器之相對位移量 85

表3-1進行收斂測試之數據 37
表3-2材料性質之各項係數 38
表4-1股骨頸表面最大應力值 59
表4-2股骨骨折處之表面最大應力值 60
表4-3固定器之最大應力值 66
表4-4骨鏍釘之螺桿應力集中處的最大應力值 68
表4-5髓內鋼釘之近端骨釘應力集中處的最大應力值 68
表4-6兩固定器之股骨球頭的垂直向下位移量 70
表4-7兩固定器之垂直向下位移量 72
1.Pervez H, Parker MJ, Pryor GA, Lutchman L, Chirodian N: Classification of trochanteric fracture of the proximal femur: a study of the reliability of current systems. Injury 2002, 33(8):713-715.
2.Kanis JA, Oden A, Johnell O, Jonsson B, De Laet C, Dawson A: The burden of osteoporotic fractures: A method for setting intervention thresholds. Osteoporosis International 2001, 12(5):417-427.
3.Gullberg B, Johnell O, Kanis JA: World-wide projections for hip fracture. Osteoporosis International 1997, 7(5):407-413.
4.Harrington KD: The use of methylmethacrylate as an adjunct in the internal fixation of unstable comminuted intertrochanteric fractures in osteoporotic patients. Journal of Bone and Joint Surgery - Series A 1975, 57(6):744-750.
5.Choueka J, Koval KJ, Kummer FJ, Zuckerman JD: Cement augmentation of intertrochanteric fracture fixation. A cadaver comparison of 2 techniques. Acta Orthopaedica Scandinavica 1996, 67(2):153-157.
6.Szpalski M, Descamps PY, Hayez JP, Raad E, Gunzburg R, Keller TS, Kosmopoulos V: Prevention of Hip Lag Screw Cut-Out by Cement Augmentation: Description of a New Technique and Preliminary Clinical Results. Journal of Orthopaedic Trauma 2004, 18(1):34-40.
7.Stoffel KK, Leys T, Damen N, Nicholls RL, Kuster MS: A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clinical Biomechanics 2008, 23(1):45-51.
8.Bartucci EJ, Gonzalez MH, Cooperman DR: The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. Journal of Bone and Joint Surgery - Series A 1985, 67(7):1094-1107.
9.Heini PF, Franz T, Fankhauser C, Gasser B, Ganz R: Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clinical Biomechanics 2004, 19(5):506-512.
10.Adams CI, Robinson CM, Court-Brown CM, McQueen MM: Prospective Randomized Controlled Trial of an Intramedullary Nail Versus Dynamic Screw and Plate for Intertrochanteric Fractures of the Femur. Journal of Orthopaedic Trauma 2001, 15(6):394-400.
11.Ahrengart L, Törnkvist H, Fornander P, Thorngren KG, Pasanen L, Wahlström P, Honkonen S, Lindgren U: A Randomized Study of the Compression Hip Screw and Gamma Nail in 426 Fractures. Clinical Orthopaedics and Related Research 2002, 401:209-222.
12.Gardner MJ, Lorich DG, Lane JM: Osteoporotic femoral neck fractures: management and current controversies. Instructional course lectures 2004, 53:427-439.
13.Tusboi M, Hasegawa Y, Suzuki S, Wingstrand H, Thorngren KG: Mortality and mobility after hip fracture in Japan. Journal of Bone and Joint Surgery - Series B 2007, 89(4):461-466.
14.Rutz P. and Pabst R.原著,藍琴臺、戴安修、張宏名,《彩色解剖學圖譜》,合計圖書出版社,民國八十七年
15.Griffin JB: The calcar femorale redefined. Clinical Orthopaedics and Related Research 1982, No. 164:211-214.
16.Cummings SR, Nevitt MC: A hypothesis: The causes of hip fractures. Journals of Gerontology 1989, 44(4):M107-M111.
17.Sadowski C, Lübbeke A, Saudan M, Riand N, Stern R, Hoffmeyer P: Treatment of reverse oblique and transverse intertrochanteric fractures with use of an intramedullary nail or a 95° screw-plate: A prospective, randomized study. Journal of Bone and Joint Surgery - Series A 2002, 84(3):372-381.
18.Chirurgie Orthopédique
http://www.maitrise-orthop.com/corpusmaitri/orthopaedic/mo65_trochanter_fracture/index.shtml
19.eorthopod Hip Fractures
http://www.eorthopod.com/content/hip-fractures
20.Olsson O, Kummer FJ, Ceder L, Koval KJ, Larsson S, Zuckerman JD: The Medoff sliding plate and a standard sliding hip screw for unstable intertrochanteric fractures. Acfa Orthop Scad 1998, 69(3):266-272.
21.Steinberg GG, Desai SS, Kornwitz NA, Sullivan TJ: The intertrochanteric hip fracture. A retrospective analysis. Orthopedics 1988, 11(2):265-273.
22.Kim WY, Han CH, Park JI, Kim JY: Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. International Orthopaedics (SICOT) 2001, 25(6):360-362.
23.Parker MJ, Pryor GA: Gamma versus DHS nailing for extracapsular femoral fractures. International Orthopaedics (SICOT) 1996, 20(3):163-168.
24.Sehat K, Baker RP, Pattison G, Price R, Harries WJ, Chesser TJS: The use of the long gamma nail in proximal femoral fractures. Injury 2005, 36(11):1350-1354.
25.Harrington P, Nihal A, Singhania AK, Howell FR: Intramedullary hip screw versus sliding hip screw for unstable intertrochanteric femoral fractures in the elderly. Injury 2002, 33(1):23-28.
26.Chen WP, Tai CL, Shih CH, Hsieh PH, Leou MC, Lee MS: Selection of fixation devices in proximal femur rotational osteotomy: clinical complications and finite element analysis. Clinical Biomechanics 2004, 19(3):255-262.
27.Brandt E, Verdonschot N, van Vugt A, van Kampen A: Biomechanical analysis of the percutaneous compression plate and sliding hip screw in intracapsular hip fractures: Experimental assessment using synthetic and cadaver bones. Injury 2006, 37(10):979-983.
28.Brumback RJ: The Rationales of Interlocking Nailing of the Femur, Tibia, and Humerus: An Overview. Clinical Orthopaedics and Related Research 1996, 324:292-320.
29.Winquist RA, Hansen Jr ST, Clawson DK: Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases. Journal of Bone and Joint Surgery - Series A 1984, 66(4):529-539.
30.Eveleigh RJ: A review of biomechanical studies of intramedullary nails. Medical Engineering &; Physics 1995, 17(5):323-331.
31.Bramlet DG: Use of the Talon Hip Compression Screw in Intertrochanteric Fractures of the Hip. Clinical Orthopaedics and Related Research 2004, 425:93-100 110.1097/1001.blo.0000132628.0000190667.e0000132626.
32.Rha JD, Kim YH, Yoon SI, Park TS, Lee MH: Factors affecting sliding of the lag screw in itertrochanteric fractures. International Orthopaedics (SICOT) 1993, 17(5):320-324.
33.Thomas AP: Dynamic hip screws that fail. Injury 1991, 22(1):45-46.
34.Hora N, Markel DC, Haynes A, Grimm MJ: Biomechanical Analysis of Supracondylar Femoral Fractures Fixed With Modern Retrograde Intramedullary Nails. Journal of Orthopaedic Trauma 1999, 13(8):539-544.
35.Koval KJ, Kummer FJ, Bharam S, Chen D, Halder S: Distal Femoral Fixation: A Laboratory Comparison of the 95° Plate, Antegrade and Retrograde Inserted Reamed Intramedullary Nails. Journal of Orthopaedic Trauma 1996, 10(6):378-382.
36.Ito K, Grass R, Zwipp H: Internal Fixation of Supracondylar Femoral Fractures: Comparative Biomechanical Performance of the 95-Degree Blade Plate and Two Retrograde Nails. Journal of Orthopaedic Trauma 1998, 12(4):259-266.
37.Kinast C, Frigg R, Perren SM: Biomechanics of the interlocking nail. Arch Orthop Trauma Surg 1990, 109(4):197-204.
38.Müller-Färber J, Wittner B, Reichel R: Late results in the management of pertrochanteric femoral fractures in the elderly with the dynamic hip screw. Der Unfallchirurg 1988, 91(8):341-350.
39.Baixauli F, Vicent V, Baixauli E, Serra V, Sánchez-Alepuz E, Gómez V, Martos F: A Reinforced Rigid Fixation Device for Unstable Intertrochanteric Fractures. Clinical Orthopaedics and Related Research 1999, 361:205-215.
40.Leung KS, So WS, Shen WY, Hui PW: Gamma nails and dynamic hip screws for peritrochanteric fractures: A randomised prospective study in elderly patients. Journal of Bone and Joint Surgery - Series B 1992, 74(3):345-351.
41.Haynes RC, Pöll RG, Miles AW, Weston RB: Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury 1997, 28(5–6):337-341.
42.Haynes RC, Pöll RG, Miles AW, Weston RB: An experimental study of the failure modes of the Gamma Locking Nail and AO Dynamic Hip Screw under static loading: a cadaveric study. Medical Engineering &; Physics 1997, 19(5):446-453.
43.Chinoy MA, Parker MJ: Fixed nail plates versus sliding hip systems for the treatment of trochanteric femoral fractures: a meta analysis of 14 studies. Injury 1999, 30(3):157-163.
44.Banan H, Al-Sabti A, Jimulia T, Hart AJ: The treatment of unstable, extracapsular hip fractures with the AO/ASIF proximal femoral nail (PFN)—our first 60 cases. Injury 2002, 33(5):401-405.
45.Brandt SE, Lefever S, Janzing HMJ, Broos PLO, Pilot P, Houben BJJ: Percutaneous compression plating (PCCP) versus the dynamic hip screw for pertrochanteric hip fractures: preliminary results. Injury 2002, 33(5):413-418.
46.Verhofstad MHJ, Werken C: DHS osteosynthesis for stable pertrochanteric femur fractures with a two-hole side plate. Injury 2004, 35(10):999-1002.
47.Schipper IB, Marti RK, Werken C: Unstable trochanteric femoral fractures: extramedullary or intramedullary fixation: Review of literature. Injury 2004, 35(2):142-151.
48.Chirodian N, Arch B, Parker MJ: Sliding hip screw fixation of trochanteric hip fractures: Outcome of 1024 procedures. Injury 2005, 36(6):793-800.
49.Laohapoonrungsee A, Arpornchayanon O, Phornputkul C: Two-hole side-plate DHS in the treatment of intertrochanteric fracture: Results and complications. Injury 2005, 36(11):1355-1360.
50.Peleg E, Mosheiff R, Liebergall M, Mattan Y: A short plate compression screw with diagonal bolts—A biomechanical evaluation performed experimentally and by numerical computation. Clinical Biomechanics 2006, 21(9):963-968.
51.Strauss E, Frank J, Lee J, Kummer FJ, Tejwani N: Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: A biomechanical evaluation. Injury 2006, 37(10):984-989.
52.Krischak GD, Augat P, Beck A, Arand M, Baier B, Blakytny R, Gebhard F, Claes L: Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate. Clinical biomechanics (Bristol, Avon) 2007, 22(10):1112-1118.
53.Jewell DPA, Gheduzzi S, Mitchell MS, Miles AW: Locking plates increase the strength of dynamic hip screws. Injury 2008, 39(2):209-212.
54.Strauss EJ, Pahk B, Kummer FJ, Egol K: Calcium Phosphate Cement Augmentation of the Femoral Neck Defect Created After Dynamic Hip Screw Removal. Journal of Orthopaedic Trauma 2007, 21(5):295-300 210.1097/BOT.1090b1013e3180616ba3180615.
55.Sitthiseripratip K, Van Oosterwyck H, Vander Sloten J, Mahaisavariya B, Bohez ELJ, Suwanprateeb J, Van Audekercke R, Oris P: Finite element study of trochanteric gamma nail for trochanteric fracture. Medical Engineering; Physics 2003, 25(2):99-106.
56.McNamara BP, Cristofolini L, Toni A, Taylor D: Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction. Journal of Biomechanics 1997, 30(6):621-630.
57.Watanabe Y, Shiba N, Matsuo S, Higuchi F, Tagawa Y, Inoue A: Biomechanical study of the resurfacing hip arthroplasty: Finite element analysis of the femoral component. The Journal of Arthroplasty 2000, 15(4):505-511.
58.Stolk J, Verdonschot N, Huiskes R: Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. Journal of Biomechanics 2001, 34(7):917-926.
59.Cristofolini L, Viceconti M, Toni A, Giunti A: Influence of thigh muscles on the axial strains in a proximal femur during early stance in gait. Journal of Biomechanics 1995, 28(5):617-624.
60.Mann KA, Bartel DL, Wright TM, Burstein AH: Coulomb frictional interfaces in modeling cemented total hip replacements: A more realistic model. Journal of Biomechanics 1995, 28(9):1067-1078.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊