跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏嘉良
研究生(外文):Chia-Liang Wei
論文名稱:超寬頻與毫米波帶通濾波器之分析與設計
論文名稱(外文):Analysis and Design of Ultra-Wideband and Millimeter-Wave Bandpass Filters
指導教授:張盛富
指導教授(外文):Sheng-Fuh Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:69
中文關鍵詞:超寬頻帶通濾波器毫米波
外文關鍵詞:Bandpass filtersMillimeter-waveCMOSUltra-Wideband
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1194
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製應用於IEEE 802.15標準之超寬頻通訊及毫米波通訊之帶通濾波器。超寬頻(3.1-10.6 GHz)帶通濾波器是以多模態共振器為基礎,在通帶內產生三個諧振模態,並設計輸入和輸出寬頻阻抗轉換網路,達到寬頻阻抗匹配,和產生通帶外之傳輸零點,以增加禁帶拒斥值。電路以RO4003基板實現,電路尺寸為2.79×1.35 cm2。量測結果顯示3.1-10.6 GHz通帶內之植入損耗為1.4 dB,返回損耗為17.0 dB,群速延遲時間小於0.8 ns,傳輸零點分別位在2.2 GHz及11.8 GHz,造成通帶邊緣有40-70 dB/GHz的滾降率(roll-off),頻率外拒斥值在2 GHz以下為35 dB,在12-14.5 GHz為25 dB。
毫米波帶通濾波晶片,共有三個電路,分別使用TSMC 0.18-um、0.13-um CMOS製程實現。晶片濾波器的設計,除了植入損耗、頻帶選擇性外,晶片面積必須足夠小。因此在本論文中以彎折式步階阻抗共振器,再加上地面浮升技術,可讓晶片面積小於0.05 。第一個晶片濾波器為CMOS 0.18-um 60GHz帶通濾波器,量測結果在58-66.7 GHz通帶內,植入損耗為3.0-3.5 dB,返回損耗小於23.7 dB,傳輸零點分別位在45.4 GHz及82.0 GHz,不包含接觸片面積為0.224 mm2。第二個晶片濾波器為CMOS 0.18-um 60GHz帶通濾波器,量測結果在55.2-63.6 GHz通帶內,植入損耗為3.5-3.7 dB,返回損耗小於10.2 dB,傳輸零點分別位在36.4 GHz及81.0 GHz,不包含接觸片面積為0.074 mm2。第三個晶片濾波器為CMOS 0.13-um 77GHz帶通濾波器,量測結果在74.8-83.7 GHz通帶內,植入損耗為3.9-4.5 dB,返回損耗小於12.5 dB,傳輸零點分別位在60.9 GHz及109.2 GHz,不包含接觸片面積為0.08 mm2。量測結果與模擬結果符合,驗證本論文提出之地面浮升技術,確實可以大幅縮小晶片面積,達到毫米單晶片系統的需求。
This thesis investigates compact and high-performance bandpass filters for IEEE 802.11.15 ultra-wideband and millimeter-wave applications. The ultra-wideband (3.1-10.6 GHz) bandpass filter was designed based on the multiple-mode resonant technique, where three resonant modes are generated in the passband to attain wide passband. Meanwhile, a novel input/output impedance transformation networks was designed for both wideband impedance matching in passband and transmission-zero generation in stopband. The filter circuit was realized on RO4003C substrate, where the circuit size is 2.79 × 1.35 cm2. The measurement results show that the insertion loss is less than 1.4 dB, the return loss is greater than 17 dB and group delay is less than 0.8 ns in 3.1-10.6 GHz passband. The two transmission zeros located at 2.2 GHz and 11.8 GHz, respectively, such that a sharp roll-off-rate 40-70 dB/GHz is obtained and a good stopband rejection of better than 35 dB below 2 GHz and 25 dB in 12-14.5 GHz is achieved.
On the other hand, three millimeter-wave bandpass filter were designed in 0.18-um 1P6M and 0.13-um 1P8M standard CMOS technology. We presented a compact stepped-impedance resonator with a raised-ground plane to achieve an extraordinary compact chip filter with size less than 0.05 . The first chip is a 60 GHz CMOS 0.18-um bandpass filter, where the measured insertion loss is 3.0-3.5 dB and the return loss is larger than 23.7 dB in 58-66.7 GHz. Two transmission zeros are generated at 45.4 and 82.0 GHz. The chip size without input and output GSG pad is 0.224 mm2. The second chip achieved a measured insertion loss of 3.5-3.7 dB, the return loss of 10.2 dB in 55.2-63.6 GHz and two transmission zeros at 36.4 and 81.0 GHz. The chip size without pad is 0.074 mm2. The third chip has measured insertion loss of 3.9-4.5 dB, the return loss of less than 12.5 dB in 74.8-83.7 GHz and two transmission zeros at 60.9 and 109.2 GHz. The chip size without pad is 0.08 mm2. The measurement results agree very well with EM simulation. This demonstrates the proposed raised-ground plane technique can efficiently reduce the filter chip size while keeping high filter performance.
目錄 i
圖目錄 iiii
表目錄 vii
第一章 緒論
1.1 超寬頻與毫米波通訊技術之發展與簡介
1.2 研究背景與動機
1.3 文獻探討
1.3.1 超寬頻帶通濾波器
1.3.2 毫米波CMOS帶通濾波器
第二章 超寬頻帶通濾波器之分析與設計
2.1 多模態共振器超寬頻濾波器之文獻回顧
2.2 多模態超寬頻濾波器
2.2.1 倒T型多模態共振器分析
2.2.2 倒F型阻抗轉換網路
2.3 電路設計
2.4 模擬與量測結果
第三章 運用接地浮升技術之毫米波CMOS帶通濾波器設計與分析
3.1 電路架構介紹
3.1.1 步階阻抗共振器之共振模態
3.1.2 傳輸零點之控制
3.2 接地浮升技術之分析
3.3 電路設計
3.4 模擬與量測結果
3.4.1 CMOS濾波器A型
3.4.2 CMOS濾波器B型
3.4.3 CMOS濾波器C型
3.5 CMOS濾波器特性比較
第四章 結論
參考文獻
[1]Federal Communications Commission, “Revision of part 15 of the Commission’s rules regarding ultra-wide-band transmission system, first note and order,” FCC, Washington, DC, ET-Docket 98-153, 2002.
[2]R. Fisher et al., “DS-UWB physical layer submission to 802.15 task group 3a,” IEEE P802.15-04/0137r4, Jan. 2005.
[3]A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a,” IEEE P802.15 Working Group for Wireless Personal Area Networks, March, 2004.
[4]S. Sun and L. Zhu, “Multimode-resonator-based bandpss filters,” IEEE Microw. Mag., vol. 10, no. 4, pp. 88-98, Apr. 2009.
[5]Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Networks-Specific Requirements-Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs): Millimeter-Wave Based Alternative Physical Layer, IEEE Standard 802.15.3c. [Online]. Available: http://www.ieee802.org/15/pub/TG3c.html.
[6]P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions,” IEEE Communications Mag., vol 40, pp. 140. 2002.
[7]Y. Shoji, C.-S. Choi, and H. ogawa,“70-GHz-and OFDM transceivers based on self-Heterodyne scheme for millimeter-wave wireless personal area network,” IEEE Trans. Microw. Theory Tech., vol 54, no. 10, pp. 3664-3674. Oct.2006.
[8]C. H. Doan, S. Emasi, A. M. Niknejad and R. W. Mouthaan, “Design of CMOS for 60 GHz applications,” in Proc. IEEE Solid-State Circuits Conf., Feb. 2004, pp. 440-441.
[9]R. Li, S. Sun and L. Zhu, “Synthesis design of ultra-wideband bandpass filters with composite series and shunt stubs,” IEEE Trans. Microw. Theory Tech., vol 57, no. 3, pp. 684-692. Mar. 2009.
[10]J. Garcia-Garcia, J. Bonache and G. Martin, “Application of electro-magnetic bandgaps to the design of ultra-wide bandpass filters with good out-of-band performance,” IEEE Trans. Microw. Theory Tech., vol 54, no. 12, pp. 4136-4140. Dec. 2006.
[11]H. Shaman and J.-S. Hong, “A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 2, pp. 121-123, Dec. 2007.
[12]L. Zhu and H. Wang, “Ultra-wideband bandpass filter on aperture-backed microstrip line,” IEEE Electron Lett., vol. 41, no. 18, pp. 1015-1016, Sept. 2005.
[13]J. Gao, L. Zhu, W. Menzel and F. Bogelsack, “Short-circuited CPW multiple-mode resonator for ultra-wideband (UWB) bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 3 pp. 104-106, Mar. 2006.
[14]H. Ishida and K. Araki, “Design and analysis of UWB bandpass filter with ring filter,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2004, vol. 3, pp. 1307-1310.
[15]C.-L. Hsu, F.-C. Hsu and J.-T. Kuo, “Microstrip bandpass filters for ultra-wideband (UWB) wireless communications,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2005, pp. 679-682.
[16]J.-S. Hong and K. Li, “Recent development of ultra-wideband (UWB) filters,” in Proc. IEEE Microwave, Antenna Propagation and EMC Technologies for Wireless Communication Int. Symp., Aug. 2007, pp. 442-445.
[17]Z.-C. Hao and J.-S. Hong, “Ultra-wideband bandpass filter using multilayer liquid-crystal-polymer technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 9, pp. 2095-2100, Sept. 2008.
[18]L. Zhu, H. Bu and K. Wu, “Aperture compensation technique for innovative design of ultra-broadband microstrip bandpass filter,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2000, pp. 315-318.
[19]W. Menzel, L. Zhu and K. Wu, “On the design of novel compact broad-band planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364-370, Feb. 2003.
[20]H. Wang, L. Zhu and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structures,” IEEE Microw. Wireless Compon. Lett., vol.15, pp. 844-846, Dec. 2005.
[21]Meng Miao and Cam Nguyen, “A novel multilayer aperture-coupled cavity resonator for millimeter-wave CMOS RFICs,” IEEE Trans. Microwave Theory Tech., vol.55, no.4, pp. 783-787, Apr. 2007.
[22]S. Sun, J. Shi, L. Zhu, S. C. Rustagi, and K. Mouthaan, “Millimeter-wave bandpass filters by standard 0.18-μm CMOS technology,” IEEE Electron Device Letters, vol. 28, no. 3, pp. 220–222, Mar. 2007.
[23]C.-L. Ko, C.-N. Kuo and Y.-Z. Juang, “On-chip transmission line modeling and applications to millimeter-wave circuit design in 0.13um CMOS technology,” in Proc. Int. Symp. on VLSI Design, Automation and Test, Apr. 2007, pp. 196-199.
[24]B. Yang, E. Skafidas and R. Evans, “Design of integrated millimeter wave microstrip interdigital bandpass filters on CMOS technology,” in Proc. European Microw. Conf., Oct. 2007, pp. 680-683.
[25]C.-Y. Hsu, C.-Y. Chen, H.-R. Chuang, “A 60-GHz millimeter-wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 246-248, Mar. 2008.
[26]J.-T. Kuo and E. Shih, “Wide bandpass filter design with three-line microstrip structures,” in IEEE MTT-S Int. Microwave Symp. Dig., 2001, vol. 3, pp. 1593-1596.
[27]L. Zhu, S. Sun and W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol.15, no.11, pp. 796-798, Nov. 2005.
[28]S. Sun and L. Zhu, “Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performance,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 440-442, Aug. 2006.
[29]J.-T. Kuo, Y.-C. Chiou and E. Cheng, “High selectivity ultra-wideband (UWB) multimode stepped-impedance resonators (SIRs) bandpass filter with two-layer broadside-coupled structure,” in Proc. Asia-Pacific Microw. Conf., Dec. 2007, pp. 1-4.
[30]R. Li and L. Zhu, “Compact UWB bandpass filter using stub-loaded multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 40-42, Jan. 2007.
[31]L. Han, K. Wu and X.-P. Chen, “Compact ultra-wideband bandpass filter using stub-loaded resonator,” IET Elctron. Lett., vol. 45, pp. 504-506, May. 2009.
[32]L. Han, K. Wu and X.-P. Zhang, “Development of packaged ultra-wideband bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 1, pp. 220-228, Jan. 2010.
[33]K.-J. S and Q. X, “Inductance-loaded Y-shaped resonators and their applications to filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 4, pp. 978-984, April. 2010.
[34]Y.-M. Chen, S.-F. Chang, C.-L. Wei, Y.-T. Wang and C.-H. Huang, “Packaged ultra-wide-band bandpass filter based on inverted-T multiple-mode resonators and inverted-F impedance transformers,” IEEE Microw. Mag., vol. 11, no. 1, pp. 126-129, Feb. 2010.
[35]T. B. Lim, S. Sun and L. Zhu, “Compact ultra-wideband bandpass filter using harmonic-suppressed multiple-mode resonator,” Electron Lett., vol. 43, no. 22, pp. 1205-1206, Oct. 2007.
[36]T.-H. Duong and I.-S. Kim, “New elliptic function type UWB BPF based on capacitively coupled λ/4 open T resonator,” IEEE Trans. Microw. Theory Tech., vol. 57, no.12, pp. 3089-3098, Dec. 2009.
[37]M. Makimoto and S. Yamashita, “Compact bandpass filters using stepped impedance resonators,” Proceedings of the IEEE., vol. 67, no. 1, pp. 16-19, Jan. 1979.
[38]M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
[39]M. sagawa, M. Makimoto and S. Yamashita, “Geometrical structures and fundamental characteristic of microwave stepped-impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1078-1085, July 1997.
[40]C. Quendo, E. Rius and C. Person, “Narrow bandpass filters using dual behavior resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, Mar. 2003.
[41]C. Quendo, E. Rius and C. Person, “Narrow bandpass filters using dual behavior resonators (DBRs) based on stepped impedance stubs and differents-length stubs,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, Mar. 2004.
[42]P.-K. Singh, S. Basu and Y.-H. Wang, “Planar Ultra-wideband bandpass filters using edge coupled microstrip lines and stepped impedance open stub,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 9, pp. 649-651, Sept. 2007.
[43]Y.-M. Chen, S.-F. Chang, C.-C. Chang and C.-Y. Chou, “A dual-band bandpass filter by interleaving heterogeneous stepped-impedance resonators,” in Proc. European Microw. Conf., Oct. 2007, pp. 854-857.
[44]G. I. Zysman and A. K. Johnson, “Coupled transmission lie networks in an inhomogeneous dielectric medium,” IEEE Trans. Microw. Theory Tech., vol. 17, pp. 753-759, Oct. 1969.
[45]V. K. Tripathi, “Asymmetric coupled transmission lines in an inhomogeneous medium,” IEEE Trans. Microwave Theory Tech., vol. 23, no. 9, pp. 734-739, Sept. 1975.
[46]Zeland Software Inc., IE3D Simulator, Jan. 1997.
[47]P. Ferrand, D. Baillargeat, S. Verdeyme, J. Puech, M. Lahti and T. Jaakola, “LTCC reduced-size bandpass filters based on capacitively loaded cavities for Q band application,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2005, pp. 12–17.
[48]陳逸名,具寬截止帶、雙頻及通拒帶可變之微波濾波器,博士論文,電機工程研究所,國立中正大學,民國99年。
[49]M. Kobayashi, “A dispersion formula satisfying recent requirements in microstrip CAD,” IEEE Trans., MTT-36, pp. 1246-1250, Aug. 1988.
[50]I. J. Bahl and R. Garg, “Simple and accurate formulas for microstrip with finite strip thickness,” Proc. IEEE, 65, pp. 1611-1612, 1977.
[51]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York: John Wiley & Sons, 2001.
[52]D. M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊