|
1. Oikarinen J. and Korhonen L. K., The bone inductive capacity of various bone transplanting materials used for treatment of experimental bone defects. Clinical Orthopaedics and Related Research, 1979(140): p. 208-215. 2. Boyne P. J., Implants and Transplants - Review of recent research in this area of oral surgery. Journal of the American Dental Association, 1973. 87(5): p. 1074-1080. 3. Aldridge J. and Berlinger N. T., Use of allogenic demineralized bone-matrix in mandibular reconstruction. Otolaryngology-Head and Neck Surgery, 1984: p. 36-37. 4. Freed L. E., Marquis J. C., Nohria A., et al., Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. Journal of Biomedical Materials Research, 1993. 27(1): p. 11-23. 5. Yannas I. V., Burke J. F., Gordon P. L., et al., Design of an artificial skin .1. basic design principles. Journal of Biomedical Materials Research, 1980. 14(1): p. 65-81. 6. Wolter J. R. and Meyer R. F., Sessile macrophages forming clear endothelium-like membrane on the inside of successful keratoprosthesis. Graefes Archive for Clinical and Experimental Ophthalmology, 1985. 222(3): p. 109-117. 7. Hutmacher D. W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543. 8. Groot K. D., Bioceramics of calcium phosphate. Boca Amsterdam, 1983: p. 100-114. 79 9. Park J. B., Biomaterials Science and Engineering. Plenum Press, 1985. 10. 鍾仁傑, 以溶膠-凝膠法製備含鋅及銀支氫氧基磷灰石與其抗菌性質研究. 國立清華大學材料科學工程所, 2001. 碩士論文. 11. Willmann G., Medical grade hydroxyapatite: State of the art. British Ceramic Transactions, 1996. 95(5): p. 212-216. 12. Kijima T. and Tsutsumi M., Preparation and Thermal-Properties of Dense Polycrystalline Oxyhydroxyapatite. Journal of the American Ceramic Society, 1979. 62(9-10): p. 455-460. 13. Shanthi P. M. S., Ashok M., Balasubramanian T., et al., Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant. Materials Letters, 2009. 63(24-25): p. 2123-2125. 14. Ho G. H., Ho T. I., Hsieh K. H., et al., gamma-polyglutamic acid produced by Bacillus subtilis (natto): Structural characteristics, chemical properties and biological functionalities. Journal of the Chinese Chemical Society, 2006. 53(6): p. 1363-1384. 15. You Y., Min B. M., Lee S. J., et al., In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal of Applied Polymer Science, 2005. 95(2): p. 193-200. 16. Lin W. C., Yu D. G. and Yang M. C., Blood compatibility of novel poly(gamma-glutamic acid)/polyvinyl alcohol hydrogels. Colloids and Surfaces B-Biointerfaces, 2006. 47(1): p. 43-49. 17. Siao F. Y., Lu J. F., Wang J. S., et al., In vitro binding of heavy metals by an edible biopolymer poly(gamma-glutamic acid). Journal of Agricultural and Food Chemistry, 2009. 57(2): p. 777-784. 18. Chang K. Y., Cheng L. W., Ho G. H., et al., Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone 80 porous scaffolds for cartilage tissue engineering. Acta Biomaterialia, 2009. 5(6): p. 1937-1947. 19. Hsieh C. Y., Tsai S. P., Wang D. M., et al., Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials, 2005. 26(28): p. 5617-5623. 20. Guelcher S. A., Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Engineering Part B-Reviews, 2008. 14(1): p. 3-17. 21. Koh M. Y., Ohtsuki C. and Miyazaki T., Modification of polyglutamic acid with silanol groups and calcium salts to induce calcification in a simulated body fluid. Journal of Biomaterials Applications, 2011. 25(6): p. 581-594. 22. Park K., Jung H. J., Kim J. J., et al., Effect of surface-activated PLLA scaffold on apatite formation in simulated body fluid. Journal of Bioactive and Compatible Polymers, 2010. 25(1): p. 27-39. 23. Kawashita M., Nakao M., Minoda M., et al., Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials, 2003. 24(14): p. 2477-2484. 24. Mittelmeier H. and Katthagen B. D., Clinical-experience in the implantation of collagen-apatite for local bone regeneration. Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete, 1983. 121(2): p. 115-123. 25. Vassilis Karageorgiou and David Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005. 26: p. 5474–5491. 26. Tsuruga E., Takita H., Itoh H., et al., Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. Journal of Biochemistry, 1997. 121(2): p. 317-324. 27. Mooney D. T., Mazzoni C. L., Breuer C., et al., Stabilized polyglycolic acid 81 fibre based tubes for tissue engineering. Biomaterials, 1996. 17(2): p. 115-124. 28. Nam Y. S. and Park T. G., Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials, 1999. 20(19): p. 1783-1790. 29. Thomson R. C., Yaszemski M. J., Powers J. M., et al., Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials, 1998. 19(21): p. 1935-1943. 30. Nam Y. S., Yoon J. J. and Park T. G., A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. Journal of Biomedical Materials Research, 2000. 53(1): p. 1-7. 31. Hsieh C. Y., Tsai S. P., Ho M. H., et al., Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 2007. 67(1): p. 124-132. 32. Doillon C. J., Whyne C. F., Brandwein S., et al., Collagen-based wound dressings - control of the pore structure and morphology. Journal of Biomedical Materials Research, 1986. 20(8): p. 1219-1228. 33. Tabata Y., Nagano A., Muniruzzaman M., et al., In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials, 1998. 19(19): p. 1781-1789. 34. Murphy W. L., Dennis R. G., Kileny J. L., et al., Salt fusion: An approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Engineering, 2002. 8(1): p. 43-52. 35. Nanda A. K. and Wicks D. A., The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process. Polymer, 82 2006. 47(6): p. 1805-1811. 36. Ohta K., Kikuchi M., Tanaka J., et al., Synthesis of c axes oriented hydroxyapatite aggregate. Chemistry Letters, 2002(9): p. 894-895. 37. Saeri M. R., Afshar A., Ghorbani M., et al., The wet precipitation process of hydroxyapatite. Materials Letters, 2003. 57(24-25): p. 4064-4069. 38. Sonoda K., Furuzono T., Walsh D., et al., Influence of emulsion on crystal growth of hydroxyapatite. Solid State Ionics, 2002. 151(1-4): p. 321-327. 39. Bouyer E., Gitzhofer F. and Boulos M. I., Morphological study of hydroxyapatite nanocrystal suspension. Journal of Materials Science-Materials in Medicine, 2000. 11(8): p. 523-531. 40. Cao H. Q., Zhang L., Zheng H., et al., Hydroxyapatite nanocrystals for biomedical applications. Journal of Physical Chemistry C, 2010. 114(43): p. 18352-18357. 41. Yang Q., Wang J. X., Guo F., et al., Preparation of hydroxyaptite nanoparticles by using high-gravity reactive precipitation combined with hydrothermal method. Industrial & Engineering Chemistry Research, 2010. 49(20): p. 9857-9863. 42. Hwang K. and Lim Y., Chemical and structural changes of hydroxyapatite films by using a sol-gel method. Surface & Coatings Technology, 1999. 115(2-3): p. 172-175. 43. Lopatin C. M., Pizziconi V., Alford T. L., et al., Hydroxyapatite powders and thin films prepared by a sol-gel technique. Thin Solid Films, 1998. 326(1-2): p. 227-232. 44. Hastings Garth W., Williams D. F., Biological Engineering Society. Biomaterials Group., et al., Mechanical properties of biomaterials. Advances in biomaterials. 1980. 83 45. 王寶琪, 電漿熔射氫氧基磷灰石披覆於鈦鋁釩合金基材. 國立成功大學材 料及工程研究所, 1994. 博士論文: p. 28-30. 46. Ratner B. D., Hoffman A. S., Schoen F. J., et al., Biomaterials science-an introduction to materials in medicine. Academic Press, 1996: p. 37-50. 47. Luo P. and Nieh T. G., Synthesis of ultrafine hydroxyapatite particles by a spray dry method. Materials Science & Engineering C-Biomimetic Materials Sensors and Systems, 1995. 3(2): p. 75-78. 48. Madsen H. E. L., Christensson F., Polyak L. E., et al., Calcium-phosphate crystallization under terrestrial and microgravity conditions. Journal of Crystal Growth, 1995. 152(3): p. 191-202. 49. Cihlar J. and Trunec M., Injection moulded hydroxyapatite ceramics. Biomaterials, 1996. 17(19): p. 1905-1911. 50. Fang Y., Agrawal D. K., Roy D. M., et al., Ultrasonically accelerated synthesis of hydroxyapatite. Journal of Materials Research, 1992. 7(8): p. 2294-2298. 51. Sun X. D., Ma C. L., Wang Y., et al., Effects of polarization on crystallization of calcium phosphate. Materials Letters, 2001. 47(4-5): p. 267-270. 52. Yang Y. Z., Kim K. H. and Ong J. L., Review on calcium phosphate coatings produced using a sputtering process - an alternative to plasma spraying. Biomaterials, 2005. 26(3): p. 327-337. 53. Matsumoto N., Yoshida K., Hashimoto K., et al., Synthesis and characterization of hydroxyapatite using polymerized complex method by chelation of calcium ions with organic phosphonic acid. Journal of the Ceramic Society of Japan, 2009. 117(1363): p. 249-254. 54. Peng F., Olson J. R., Shaw M. T., et al., Influence of pretreatment on the surface characteristics of PLLA fibers and subsequent hydroxyapatite 84 coating. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009. 88B(1): p. 220-229. 55. Tanahashi M., Kamiya K., Suzuki T., et al., Fibrous hydroxyapatite grown in the gel system - effects of Ph of the solution on the growth-rate and morphology. Journal of Materials Science-Materials in Medicine, 1992. 3(1): p. 48-53. 56. Liu C. S., Huang Y., Shen W., et al., Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials, 2001. 22(4): p. 301-306. 57. Boissard C. I. R., Bourban P. E., Tami A. E., et al., Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Acta Biomaterialia, 2009. 5(9): p. 3316-3327. 58. Wang L., Li Y., Zuo Y., et al., Porous bioactive scaffold of aliphatic polyurethane and hydroxyapatite for tissue regeneration. Biomedical Materials, 2009. 4(2). 59. Laschke M. W., Strohe A., Menger M. D., et al., In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomaterialia, 2010. 6(6): p. 2020-2027. 60. 丁冠中, 水分散性聚氨酯/聚麩胺酸/三鈣磷酸鹽組織工程複合支架之製備 與特性研究. 國立成功大學化學工程, 2010. 碩士論文.
|