跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建霖
研究生(外文):Chien-Lin Chen
論文名稱:以聚麩胺酸鹽成長氫氧基磷灰石及其與水分散性聚氨酯所形成之複合支架的特性分析
論文名稱(外文):Preparation and characterization ofpoly-γ-glutamate-formed hydroxyapatite/waterbased poly(urethane) composite scaffolds
指導教授:陳國裕
指導教授(外文):Kuo-Yu Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:99
中文關鍵詞:水分散聚氨酯聚麩胺酸鹽複合支架氫氧基磷灰石
外文關鍵詞:hydroxyapatitepoly-γ-glutamatecomposite scaffoldswater-based polyurethane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用聚麩胺酸鹽以化學沉澱法生長氫氧基磷灰石,再將其以不同比例與水分散性聚氨酯摻混,製備出複合薄膜與複合支架,其聚麩胺酸鹽-氫氧基磷灰石含量分別為0~43 wt%與0~67 wt%。由X 光繞射儀及能譜分析儀測試結果顯示本研究所合成出的磷酸鈣確實為氫氧基磷灰石,其鈣磷比為1.67,平均粒徑約為110 nm。
掃描式電子顯微鏡之元素影像分析結果顯示氫氧基磷灰石在複合薄膜中具有良好的分散性,當聚麩胺酸鹽-氫氧基磷灰石含量為33 wt%時,複合薄膜有較大的楊氏模數、拉伸強度與伸長率。
由掃描式電子顯微鏡分析結果顯示水分散性聚氨酯溶液濃度及聚麩胺酸鹽-氫氧基磷灰石含量會影響支架的孔洞形態,支架孔洞大小會隨著聚氨酯溶液濃度增加而降低,但其會隨著聚麩胺酸鹽-氫氧基磷灰石含量增加而增加,而支架的吸水率及孔隙度也會隨著聚麩胺酸鹽-氫氧基磷灰石含量增加而增加,當聚麩胺酸鹽-氫氧基磷灰石含量為67 wt%時,支架的平均孔洞大約為250 μm,孔隙度高達93%,吸水率高達1060%。機械性質分析結果顯示,支架的壓縮強度及楊氏模數也會隨著聚麩胺酸鹽-氫氧基磷灰石含量增加而增加。
In this study, poly-γ-glutamate-hydroxyapatite (PGA-HA) particles were synthesized by a co-precipitation method. Then, a series of PGA-HA/water-based polyurethane composite films and scaffolds with different amounts of PGA-HA
particles were fabricated. The content of PGA-HA in the composite films and scaffolds was 0~43 wt% and 0~67 wt%, respectively. The results of wide-angle X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) confirmed that the synthesized calcium phosphate was in the form of HA with the ratio of Ca/P = 1.67.
The particle size of PGA-HA particles was about 110 nm.
EDS mapping analysis revealed that the PGA-HA particles distributed homogeneously in the composite films. The composite film exhibited a higher Young’s modulus, tensile strength and elongation at break when the PGA-HA content
was 33 wt%.
Scanning electron microscope images showed that the pore size of the scaffolds decreased with increasing the concentration of polyurethane dispersion, but it increased with the increase of PGA-HA content. The swelling ratio and porosity of the composite scaffolds increased with the increase of PGA-HA content. The composite
scaffold with 67 wt% PGA-HA had mean pore size of about 250 μm, porosity about 93% and swelling ratio of about 1060%. Moreover, the Young''s modulus and compressive strength of the composite scaffolds increased with the increase of
III PGA-HA content.
摘要............................................................................................................................... I
Abstract........................................................................................................................ II
誌謝..............................................................................................................................IV
目錄...............................................................................................................................V
表目錄..........................................................................................................................IX
圖目錄...........................................................................................................................X
第一章 緒論..................................................................................................................1
1-1 前言.................................................................................................................1
1-2 硬骨組織工程................................................................................................2
1-3 生醫支架材料必須具備的條件.....................................................................3
1-4 氫氧基磷灰石................................................................................................4
1-4-1 氫氧基磷灰石基本性質......................................................................4
1-4-2 HA 的奈米性質...................................................................................7
1-5 聚麩胺酸........................................................................................................7
1-6 聚氨酯............................................................................................................9
1-6-1 水分散性聚氨酯簡介.........................................................................9
1-6-2 二異氰酸酯.......................................................................................10
1-6-3 軟鏈段...............................................................................................11
1-6-4 非離子鏈延長劑...............................................................................12
1-6-5 離子型鏈延長劑...............................................................................13
1-6-6 催化劑...............................................................................................14
1-7 研究動機......................................................................................................15
第二章 文獻回顧........................................................................................................16
2-1 簡介..............................................................................................................16
VI
2-2 生醫骨骼材料分類.......................................................................................17
2-3 生醫材料複合支架......................................................................................18
2-3-1 生醫孔洞支架發展...........................................................................18
2-3-2 生醫孔洞支架製備方法...................................................................19
2-3-3 生醫孔洞支架特性...........................................................................22
2-4 聚氨酯合成丙酮法 (solution or acetone process) ......................................22
2-5 奈米材料製作方法.......................................................................................23
2-5-1 化學沉澱法(chemical coprecipitation method)................................24
2-5-2 水熱法(hydrothermal method)..........................................................25
2-5-3 溶膠-凝膠法(sol-gel method) ...........................................................25
2-6 氫氧基磷灰石粉末製備的影響因素..........................................................26
2-6-1 界面活性劑.......................................................................................28
2-6-2 帶有陰離子基團的抓鈣影響...........................................................29
2-6-3 PH 值對生長氫氧基磷灰石的影響...............................................30
2-6-4 反應溫度影響HA 形成...................................................................31
2-7 聚氨酯摻混氫氧基磷灰石..........................................................................32
第三章 實驗材料與方法............................................................................................33
3-1 藥品..............................................................................................................33
3-2 儀器..............................................................................................................35
3-3 合成..............................................................................................................36
3-3-1 聚麩胺酸鹽生長奈米氫氧基磷灰石...............................................36
3-3-2 水分散性聚氨酯...............................................................................36
3-3-3 製備水分散性聚氨酯/聚麩胺酸鹽/氫氧基磷灰石之多孔複合材料
......................................................................................................................37
3-4 材料特性分析..............................................................................................38
3-4-1 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared
VII
Spectroscopy,FTIR)..................................................................................38
3-4-2 X-光繞射分析儀 (X-ray Diffraction,XRD) ..................................38
3-4-3 掃描式電子顯微鏡 (Scanning Electron Microscopy,SEM) ........38
3-4-4 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM)...39
3-4-5 能量散佈分析儀 (Energy Dispersive Spectrometer,EDS)...........39
3-4-6 熱重分析儀 (Thermo Gravimetric Analyzer,TGA) .....................39
3-4-7 粒徑分析...........................................................................................40
3-4-8 機械性質測試...................................................................................40
3-4-9 支架孔隙度測試...............................................................................40
3-4-10 支架吸水率測試.............................................................................41
3-4-11 支架降解率測試.............................................................................41
3-4-12 統計分析方法.................................................................................42
第四章 結果與討論....................................................................................................43
4-1 聚麩胺酸鹽成長氫氧基磷灰石..................................................................43
4-1-1 PH 值對合成磷酸鈣鈣磷比之影響..................................................43
4-1-2 X 光繞射分析儀分析......................................................................45
4-1-3 聚麩胺酸鹽含量對氫氧基磷灰石粒徑影響...................................49
4-1-4 聚麩胺酸含量對粒子安定性之影響...............................................52
4-1-5 起始溫度與影響粒徑.......................................................................53
4-1-6 傅立葉紅外光譜分析.......................................................................54
4-1-7 聚麩胺酸與氫氧基磷灰石之實際比例...........................................59
4-2 水分散性聚氨酯..........................................................................................60
4-3 複合薄膜......................................................................................................61
4-3-1 氫氧基磷灰石分散性........................................................................61
4-3-2 機械性質...........................................................................................62
4-4 複合支架......................................................................................................64
VIII
4-4-1 傅立葉紅外光譜分析.......................................................................64
4-4-2 孔洞形態...........................................................................................65
4-4-3 複合支架孔隙度測試.......................................................................72
4-4-4 孔洞複合支架吸水率測試...............................................................73
4-4-5 孔洞複合支架降解率測試...............................................................74
4-4-6 機械性質測試...................................................................................75
第五章 總結................................................................................................................77
參考文獻......................................................................................................................78
自述..............................................................................................................................85
1. Oikarinen J. and Korhonen L. K., The bone inductive capacity of various bone
transplanting materials used for treatment of experimental bone defects.
Clinical Orthopaedics and Related Research, 1979(140): p. 208-215.
2. Boyne P. J., Implants and Transplants - Review of recent research in this area
of oral surgery. Journal of the American Dental Association, 1973. 87(5): p.
1074-1080.
3. Aldridge J. and Berlinger N. T., Use of allogenic demineralized bone-matrix
in mandibular reconstruction. Otolaryngology-Head and Neck Surgery, 1984:
p. 36-37.
4. Freed L. E., Marquis J. C., Nohria A., et al., Neocartilage formation in vitro
and in vivo using cells cultured on synthetic biodegradable polymers. Journal
of Biomedical Materials Research, 1993. 27(1): p. 11-23.
5. Yannas I. V., Burke J. F., Gordon P. L., et al., Design of an artificial skin .1.
basic design principles. Journal of Biomedical Materials Research, 1980. 14(1):
p. 65-81.
6. Wolter J. R. and Meyer R. F., Sessile macrophages forming clear
endothelium-like membrane on the inside of successful keratoprosthesis.
Graefes Archive for Clinical and Experimental Ophthalmology, 1985. 222(3):
p. 109-117.
7. Hutmacher D. W., Scaffolds in tissue engineering bone and cartilage.
Biomaterials, 2000. 21(24): p. 2529-2543.
8. Groot K. D., Bioceramics of calcium phosphate. Boca Amsterdam, 1983: p.
100-114.
79
9. Park J. B., Biomaterials Science and Engineering. Plenum Press, 1985.
10. 鍾仁傑, 以溶膠-凝膠法製備含鋅及銀支氫氧基磷灰石與其抗菌性質研究.
國立清華大學材料科學工程所, 2001. 碩士論文.
11. Willmann G., Medical grade hydroxyapatite: State of the art. British Ceramic
Transactions, 1996. 95(5): p. 212-216.
12. Kijima T. and Tsutsumi M., Preparation and Thermal-Properties of Dense
Polycrystalline Oxyhydroxyapatite. Journal of the American Ceramic Society,
1979. 62(9-10): p. 455-460.
13. Shanthi P. M. S., Ashok M., Balasubramanian T., et al., Synthesis and
characterization of nano-hydroxyapatite at ambient temperature using cationic
surfactant. Materials Letters, 2009. 63(24-25): p. 2123-2125.
14. Ho G. H., Ho T. I., Hsieh K. H., et al., gamma-polyglutamic acid produced by
Bacillus subtilis (natto): Structural characteristics, chemical properties and
biological functionalities. Journal of the Chinese Chemical Society, 2006.
53(6): p. 1363-1384.
15. You Y., Min B. M., Lee S. J., et al., In vitro degradation behavior of
electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal
of Applied Polymer Science, 2005. 95(2): p. 193-200.
16. Lin W. C., Yu D. G. and Yang M. C., Blood compatibility of novel
poly(gamma-glutamic acid)/polyvinyl alcohol hydrogels. Colloids and
Surfaces B-Biointerfaces, 2006. 47(1): p. 43-49.
17. Siao F. Y., Lu J. F., Wang J. S., et al., In vitro binding of heavy metals by an
edible biopolymer poly(gamma-glutamic acid). Journal of Agricultural and
Food Chemistry, 2009. 57(2): p. 777-784.
18. Chang K. Y., Cheng L. W., Ho G. H., et al., Fabrication and characterization
of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone
80
porous scaffolds for cartilage tissue engineering. Acta Biomaterialia, 2009.
5(6): p. 1937-1947.
19. Hsieh C. Y., Tsai S. P., Wang D. M., et al., Preparation of
gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials,
2005. 26(28): p. 5617-5623.
20. Guelcher S. A., Biodegradable polyurethanes: Synthesis and applications in
regenerative medicine. Tissue Engineering Part B-Reviews, 2008. 14(1): p.
3-17.
21. Koh M. Y., Ohtsuki C. and Miyazaki T., Modification of polyglutamic acid
with silanol groups and calcium salts to induce calcification in a simulated
body fluid. Journal of Biomaterials Applications, 2011. 25(6): p. 581-594.
22. Park K., Jung H. J., Kim J. J., et al., Effect of surface-activated PLLA scaffold
on apatite formation in simulated body fluid. Journal of Bioactive and
Compatible Polymers, 2010. 25(1): p. 27-39.
23. Kawashita M., Nakao M., Minoda M., et al., Apatite-forming ability of
carboxyl group-containing polymer gels in a simulated body fluid.
Biomaterials, 2003. 24(14): p. 2477-2484.
24. Mittelmeier H. and Katthagen B. D., Clinical-experience in the implantation of
collagen-apatite for local bone regeneration. Zeitschrift Fur Orthopadie Und
Ihre Grenzgebiete, 1983. 121(2): p. 115-123.
25. Vassilis Karageorgiou and David Kaplan, Porosity of 3D biomaterial scaffolds
and osteogenesis. Biomaterials, 2005. 26: p. 5474–5491.
26. Tsuruga E., Takita H., Itoh H., et al., Pore size of porous hydroxyapatite as the
cell-substratum controls BMP-induced osteogenesis. Journal of Biochemistry,
1997. 121(2): p. 317-324.
27. Mooney D. T., Mazzoni C. L., Breuer C., et al., Stabilized polyglycolic acid
81
fibre based tubes for tissue engineering. Biomaterials, 1996. 17(2): p. 115-124.
28. Nam Y. S. and Park T. G., Biodegradable polymeric microcellular foams by
modified thermally induced phase separation method. Biomaterials, 1999.
20(19): p. 1783-1790.
29. Thomson R. C., Yaszemski M. J., Powers J. M., et al., Hydroxyapatite fiber
reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
Biomaterials, 1998. 19(21): p. 1935-1943.
30. Nam Y. S., Yoon J. J. and Park T. G., A novel fabrication method of
macroporous biodegradable polymer scaffolds using gas foaming salt as a
porogen additive. Journal of Biomedical Materials Research, 2000. 53(1): p.
1-7.
31. Hsieh C. Y., Tsai S. P., Ho M. H., et al., Analysis of freeze-gelation and
cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate
Polymers, 2007. 67(1): p. 124-132.
32. Doillon C. J., Whyne C. F., Brandwein S., et al., Collagen-based wound
dressings - control of the pore structure and morphology. Journal of
Biomedical Materials Research, 1986. 20(8): p. 1219-1228.
33. Tabata Y., Nagano A., Muniruzzaman M., et al., In vitro sorption and
desorption of basic fibroblast growth factor from biodegradable hydrogels.
Biomaterials, 1998. 19(19): p. 1781-1789.
34. Murphy W. L., Dennis R. G., Kileny J. L., et al., Salt fusion: An approach to
improve pore interconnectivity within tissue engineering scaffolds. Tissue
Engineering, 2002. 8(1): p. 43-52.
35. Nanda A. K. and Wicks D. A., The influence of the ionic concentration,
concentration of the polymer, degree of neutralization and chain extension on
aqueous polyurethane dispersions prepared by the acetone process. Polymer,
82
2006. 47(6): p. 1805-1811.
36. Ohta K., Kikuchi M., Tanaka J., et al., Synthesis of c axes oriented
hydroxyapatite aggregate. Chemistry Letters, 2002(9): p. 894-895.
37. Saeri M. R., Afshar A., Ghorbani M., et al., The wet precipitation process of
hydroxyapatite. Materials Letters, 2003. 57(24-25): p. 4064-4069.
38. Sonoda K., Furuzono T., Walsh D., et al., Influence of emulsion on crystal
growth of hydroxyapatite. Solid State Ionics, 2002. 151(1-4): p. 321-327.
39. Bouyer E., Gitzhofer F. and Boulos M. I., Morphological study of
hydroxyapatite nanocrystal suspension. Journal of Materials Science-Materials
in Medicine, 2000. 11(8): p. 523-531.
40. Cao H. Q., Zhang L., Zheng H., et al., Hydroxyapatite nanocrystals for
biomedical applications. Journal of Physical Chemistry C, 2010. 114(43): p.
18352-18357.
41. Yang Q., Wang J. X., Guo F., et al., Preparation of hydroxyaptite
nanoparticles by using high-gravity reactive precipitation combined with
hydrothermal method. Industrial & Engineering Chemistry Research, 2010.
49(20): p. 9857-9863.
42. Hwang K. and Lim Y., Chemical and structural changes of hydroxyapatite
films by using a sol-gel method. Surface & Coatings Technology, 1999.
115(2-3): p. 172-175.
43. Lopatin C. M., Pizziconi V., Alford T. L., et al., Hydroxyapatite powders and
thin films prepared by a sol-gel technique. Thin Solid Films, 1998. 326(1-2): p.
227-232.
44. Hastings Garth W., Williams D. F., Biological Engineering Society.
Biomaterials Group., et al., Mechanical properties of biomaterials. Advances
in biomaterials. 1980.
83
45. 王寶琪, 電漿熔射氫氧基磷灰石披覆於鈦鋁釩合金基材. 國立成功大學材
料及工程研究所, 1994. 博士論文: p. 28-30.
46. Ratner B. D., Hoffman A. S., Schoen F. J., et al., Biomaterials science-an
introduction to materials in medicine. Academic Press, 1996: p. 37-50.
47. Luo P. and Nieh T. G., Synthesis of ultrafine hydroxyapatite particles by a
spray dry method. Materials Science & Engineering C-Biomimetic Materials
Sensors and Systems, 1995. 3(2): p. 75-78.
48. Madsen H. E. L., Christensson F., Polyak L. E., et al., Calcium-phosphate
crystallization under terrestrial and microgravity conditions. Journal of Crystal
Growth, 1995. 152(3): p. 191-202.
49. Cihlar J. and Trunec M., Injection moulded hydroxyapatite ceramics.
Biomaterials, 1996. 17(19): p. 1905-1911.
50. Fang Y., Agrawal D. K., Roy D. M., et al., Ultrasonically accelerated
synthesis of hydroxyapatite. Journal of Materials Research, 1992. 7(8): p.
2294-2298.
51. Sun X. D., Ma C. L., Wang Y., et al., Effects of polarization on crystallization
of calcium phosphate. Materials Letters, 2001. 47(4-5): p. 267-270.
52. Yang Y. Z., Kim K. H. and Ong J. L., Review on calcium phosphate coatings
produced using a sputtering process - an alternative to plasma spraying.
Biomaterials, 2005. 26(3): p. 327-337.
53. Matsumoto N., Yoshida K., Hashimoto K., et al., Synthesis and
characterization of hydroxyapatite using polymerized complex method by
chelation of calcium ions with organic phosphonic acid. Journal of the
Ceramic Society of Japan, 2009. 117(1363): p. 249-254.
54. Peng F., Olson J. R., Shaw M. T., et al., Influence of pretreatment on the
surface characteristics of PLLA fibers and subsequent hydroxyapatite
84
coating. Journal of Biomedical Materials Research Part B-Applied
Biomaterials, 2009. 88B(1): p. 220-229.
55. Tanahashi M., Kamiya K., Suzuki T., et al., Fibrous hydroxyapatite grown in
the gel system - effects of Ph of the solution on the growth-rate and
morphology. Journal of Materials Science-Materials in Medicine, 1992. 3(1):
p. 48-53.
56. Liu C. S., Huang Y., Shen W., et al., Kinetics of hydroxyapatite precipitation
at pH 10 to 11. Biomaterials, 2001. 22(4): p. 301-306.
57. Boissard C. I. R., Bourban P. E., Tami A. E., et al.,
Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
Acta Biomaterialia, 2009. 5(9): p. 3316-3327.
58. Wang L., Li Y., Zuo Y., et al., Porous bioactive scaffold of aliphatic
polyurethane and hydroxyapatite for tissue regeneration. Biomedical Materials,
2009. 4(2).
59. Laschke M. W., Strohe A., Menger M. D., et al., In vitro and in vivo
evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane)
composite scaffold for bone tissue engineering. Acta Biomaterialia, 2010. 6(6):
p. 2020-2027.
60. 丁冠中, 水分散性聚氨酯/聚麩胺酸/三鈣磷酸鹽組織工程複合支架之製備
與特性研究. 國立成功大學化學工程, 2010. 碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊