跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊宜霖
研究生(外文):I-Lin Yang
論文名稱:齒條刀具創成時變齒輪剛性於齒輪系統之非線性動態分析
論文名稱(外文):Nonlinear Dynamic Analysis of Geared System with Time-Dependent Gear Mesh Stiffness Using Rack Cutter
指導教授:蕭庭郎
指導教授(外文):Ting-Nung Shiau
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:113
中文關鍵詞:齒條刀具時變
外文關鍵詞:Rack CutterTime-Dependent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
於齒輪系統之非線性動態分析中,嚙合剛性的分析,一般均用數學上的技巧,如:傅立葉級數(Fourier series)展開或方波函數來模擬,但這與實驗方法所量測出的結果有很大的誤差。
本研究所提出之方式由齒條刀具創成漸開線齒形(involute tooth profile),再由齒形輪廓計算出嚙合剛性,並利用此剛性來分析對齒輪系統之非線性動態影響。齒條刀具的主要創成參數有,直邊段參數、圓角段夾角、壓力角、齒厚、齒深等,其中齒深則由齒根高、齒冠高與齒頂隙所構成。其中,壓力角,齒深與齒數,這些參數會影響到齒形輪廓的成形,並造成嚙合剛性有不一樣的計算結果。本文即在討論壓力角、齒深、齒數如何影響嚙合剛性,進而造成齒輪系統之非線性動態行為。
由分析結果顯示,接觸率與嚙合剛性都會造成齒輪動態性能有所影響。高接觸比齒系對於整體的系統響應會較小,且高轉速下能平穩運轉;高嚙合剛性會使系統響應增大。此系統理論模型能快速求解出響應進而預先分析運轉情況,選用適當齒系於機械傳動。
The analysis of the mesh stiffness in the nonlinear dynamic gear train was simulated by applying mathematical technique such as Fourier series, rectangular wave function. However, the error always exists between practical experience and mathematical technique.
This study is focused on the involute tooth profile of generation of the rack cutter and evaluated the mesh stiffness by using tooth profile. Furthermore, the effect of the mesh stiffness affected the non-linear dynamic behavior of the gear train. The generated parameters of the rack cutter included line and fillet parts, pressure angle, and tooth depth (which included root tooth, addendum, and clearance). These can affect the tooth profile and evaluation of the mesh stiffness. In this study, the parameters design how to affect the tooth profile, mesh stiffness, and non-linear dynamic behavior.
According to the results, the dynamic behavior of gear train was affected by the contact ratio and mesh stiffness. The system response was small for the gear train of high contact ratio as stable action at high speed. The response can be increased for high mesh stiffness. This theoretical model of system can be quickly solved response to pre-analysis a situation of the motion and selected the gear train in the mechanical transmission.
摘要 I
ABSTRACT II
CONTENTS III
LIST OF TABLES VI
LIST OF FIGURES VII
NOMENCLATURE XII

CHARTER 1
INTRODUCTION 1
1-1 Motivation of Research 1
1-2 Literature Review 2
1-2-1 Types of Geared System Models 2
1-2-2 Geared System 4
1-2-3 Gear Mesh Stiffness 7
1-3 Outlines 9

CHAPTER 2
MODEL AND DYNAMIC CHARACTERISTIC OF THE MULTI-MESH GEAR TRAIN 10
2-1 Configuration of System Model 10
2-2 The System Equation of Motion 12
CHARPTER 3
ANALYSIS OF TIME-VARYING GEAR MESH STIFFNESS 18
3-1 Generation of the Spur Gear 19
3-1-1 Rack Cutter 19
3-1-2 Coordinate Transformation 21
3-1-3 Generation of a Locus of Rack Cutter 24
3-1-4 Tangent and Normal to a Plane Curve 25
3-1-5 Envelop of a Locus of Rack Cutter 27
3-1-6 Generation of Involute Tooth Profile 30
3-2 Analysis of Time-Varying Gear Mesh Stiffness 32
3-2-1 Evaluation of Gear Mesh Stiffness 33
3-2-2 Time-Varying Gear Mesh Stiffness 39
3-2-3 Variation of Stiffness due to the Number of Contact Pairs 40

CHARPTER 4
NUMERICAL RESULTS AND DISCUSSIONS 50
4-1 Numerical Results Compared with the Published Paper 50
4-2 Gear Mesh Stiffness Analysis 52
4-3 Computation of Gear Mesh Stiffness 53
4-4 Dynamic Analysis of System Model 55

CHARPTER 5
CONCLUSIONS AND FUTURE STUDY 92
5-1 Conclusion 92
5-1 Future Studies 93
REFERENCE 94
[1] HN Ozguven and Houser DR, 1988, “Mathematical models used in gear dynamics”, Journal of Sound and Vibration, Vol. 121, No. 3, pp. 383-411.
[2] H Vinayak and R Singh, 1998, “Multi-body dynamics and modal analysis of compliant gear bodies”, Journal of Sound and Vibration, Vol. 210, No. 2, pp. 171-214.
[3] H Vinayak , R Singh, and C Padmanabhan, 1995, “Linear dynamic analysis of multi-mesh transmissions containing external rigid gears”, Journal of Sound and Vibration, Vol. 185, No. 1, pp. 1-32.
[4] M Benton and A Seireg, 1978, “Simulation of resonances and instability conditions in pinion-geared systems”, ASME Journal of Mechanical Design, Vol. 100, pp. 26-32.
[5] M Benton and A Seireg, 1981, “Factors influencing instability and resonance in Geared systems”, ASME Journal of Mechanical Design, Vol. 103, pp. 372-378.
[6] A. Kahraman, and R. Singh, 1990,“Non-Linear Dynamics of a Spur Gear Pair,”Journal of Sound and Vibration, Vol. 142, No.l , pp. 49-75.
[7] R. G. Parker, S. M. Vijayakar, and T., Imajo, 2000, “Non-Linear Dynamic Response of a Spur Gear Pair: Modeling and Experimental Comparisons,” Journal of Sound and Vibration, Vol. 237, No. 3, pp. 435-455.
[8] D. Michalopoulos, and A. Dimarogonas, 1982,“Dynamic Behavior of Geared Systems with Backlash due to Stick-Slip Vibratory Motion,” Wear, Vol. 81, pp. 135-143.
[9] A. Kahraman, and R. Singh, 1991, “Non-Linear Dynamics of a Geared Rotor-Bearing System with Multiple Clearances,” Journal of Sound and Vibration, Vol. 144, No. 3, pp. 469-506.
[10] K. Y. Yoon and S. S. Rao, 1996, “Dynamic Load Analysis of Spur Gears Using a New Tooth Profile”, Journal of Mechanical Design, Vol. 118, pp. 1-6
[11] S. Theodossiades, and S. Natsiavas, 2001,“Periodic and Chaotic Dynamics of Motor-Driven Gear-Pair Systems with Backlash,” Chaos, Solitons and Fractals, Vol.12, pp. 2427-2440.
[12] M. Li, H. Hu, P. L. Y. Jiang, and L. Yu, 2002,“Coupled Axial-Lateral-Torsional Dynamics of a Rotor-Bearing System Geared by Spur Bevel Gears,” Journal of Sound and Vibration, Vol. 254, No. 3, pp. 427-446.
[13] T. N. Shiau, J. S. Rao, J. R. Chang, and S.-T. Choi, 1999, “Dynamic Behavior of Geared Rotors”, Transactions of the ASME, Vol. 121, pp. 494-503.
[14] G. W. Blankenship, and A. Kahraman, 1995,“Steady State Forced Response of a Mechanical Oscillator with Combined Parametric Excitation and Clearance Type Non-Linearity,”Journal of Sound and Vibration, Vol. 185, No. 5, pp. 743-765.
[15] S. Theodossiades, and S. Natsiavas, 2000,“Non-Linear Dynamics of Gear-Pair Systems with Periodic Stiffness and Backlash,” Journal of Sound and Vibration, Vol. 229, No. 2, pp. 287-310.
[16] M. Vaishya, and R. Singh, 2001,“Analysis of Periodically Varying Gear Mesh Systems with Coulomb Friction Using Floquet Theory,” Journal of Sound and Vibration, Vol. 243, No. 3, pp. 525-545.
[17] H. N. Ozguven, 1991, “A Non-Linear Mathematical Model for Dynamic Analysis of Spur Gears Including Shaft and Bearing Dynamics,” Journal of Sound and Vibration, Vol. 145, No. 2, pp. 239-260.
[18] A. Al-shyyab, and A. Kahraman, 2005, “Non-Linear Dynamic Analysis of a Multi-Mesh gear Train Using Multi-Term Harmonic Balance Method: Sub-Harmonic Motions,”Journal of Sound and Vibration, Vol. 279, pp. 417-451.
[19] R. W. Cornell and W. W. Westervelt, 1978, “Dynamic Tooth Loads and Stressing for High Contact Ratio Spur Gears”, Journal of Mechanical Design, Vol. 100, pp.69-76
[20] D. C. H. Yang and Z. X. Sun, 1985, “A Rotary Model for Spur Gear Dynamics”, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 107, pp. 529-535
[21] D. C. H. Yang and J. Y. Lin, 1987, “Hertzian Damping, Tooth Friction and Bending Elasticity in Gear Impact Dynamics”, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, pp. 189-196
[22] A Kahraman and R. Singh, 1991, “Interactions between Time-Varying Mesh Stiffness and Clearance Non-Linearities In A Geared System”, Jounal of Sound and Vibration, Vol 146, pp. 135-156
[23] M Benton and A Seireg, 1981 , “Factors influencing instability and resonance in Geared systems”, ASME J. Mech. Des. 103, 372-378
[24] H-H. Lin, R. L. Huston, and J. J. Coy, 1988, “On Dynamic Loads in Parallel Shaft Transmissions: Part I-Modelling and Analysis”, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 221-225
[25] H-H. Lin, R. L. Huston, and J. J. Coy, 1988, “On Dynamic Loads in Parallel Shaft Transmissions: Part II-Parameter Study”, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 226-229
[26] R. W. Cornell, 1981, “Compliance and Stress Sensitivity of Spur Gear Teeth”, Journal of Mechanical Design, Vol. 103, pp. 447-459
[27] P. Velex, and P. Sainsot, 2006,“On the Modeling of Excitations in Geared Systems by Transmission Errors,”Journal of Sound and Vibration, Vol. 290, pp. 882-909.
[28] Faydor L. Litvin, 1989, “Theory of Gearing”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top