跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/17 05:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宜勳
論文名稱:BMF模糊類神經網路的演化式學習方法與應用
論文名稱(外文):Evolutionary Learning and Application of BMF Fuzzy-Neural Network
指導教授:王偉彥王偉彥引用關係
指導教授(外文):Wei-Yen Wang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:B-spline 函數模糊類神經網路簡易式基因演算法函數近似間接型適應控制
外文關鍵詞:B-spline membership functionfuzzy neural networksimplified genetic algorithmfunction approximationindirect adaptive control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,提出一種簡單式的基因演算法(Simplified Genetic Algorithm)用來調整模糊類經網路中的權重值及BMF(Bspline Membership Function)控制點。傳統模糊類神經網路透過梯度下降法學習,在學習過程中可能會產生落入區域極值的現象。在不同領域,基因演算法搜尋最佳值的特性已經受到廣泛的注意。因此許多研究者利用基因演算法來克服傳統梯度下降法所產生的問題。但是,傳統的基因演算法對於處理大量變數 (超過100) 編碼解碼的過程中會有兩個重大的缺點:第一個是過程中需要大量的計算,第二個是經過此過程照成精確度的偏差。在本文中,提出的簡易型基因演算法藉由循序搜尋交配點來保證子代的適應力會優方於母代。染色體由實數的方式組成,包括了模糊類經網路中的權重值及BMF控制點。SGA可以快速收斂到模糊類神經網路的最佳值已經在本文中証實。近年來,線上即時控制是一個重要的研究方向,但是以基因演算法做為基礎的線上即時控制,因為速算量過大會有控制力延遲的問題而無法做更進一步的研究。本文藉由SGA快速收斂的特性設計線上即時間接型適應控制器來控制機械手臂及倒單擺系統在模擬中得到不錯的效果。

In this thesis, a novel approach to adjust both the control points of B-spline membership functions (BMFs) and the weightings of fuzzy-neural networks using a simplified genetic algorithm (SGA) is proposed. Fuzzy-neural networks (FNN) are traditionally trained by using gradient-based methods, and may fall into a local minimum during the learning process. Genetic algorithms have drawn significant attentions in various fields due to their capabilities of directed random search for global optimization. This motivates the use of genetic algorithms to overcome the problem encountered by the conventional learning methods. However, it is well known that searching speed of the conventional genetic algorithms is not desirable. Thus far, such conventional genetic algorithms are inherently disadvantaged in dealing with a vast amount (over 100) of adjustable parameters in the fuzzy-neural networks. In this thesis, the SGA is proposed by using a sequential-search-based crossover point (SSCP) method in which a better crossover point is determined and only the gene at the specified crossover point is crossed as a single point crossover operation. Chromosomes consisting of both the control points of BMF’s and the weightings of fuzzy-neural networks are coded as an adjustable vector with real number components and searched by the SGA. Adaptive control is a technique of applying some system identification techniques to obtain a model of a system from input-output data. GA on-line training is one of most significant studies of the subject. However, with traditional GA no further training of the FNN is possible, while the drive is operating since the training process is too slow for on-line training. Because of the use of the SGA, faster convergence of the evolution process to search for an optimal fuzzy-neural network can be achieved. Unknown systems identified by using the fuzzy-neural networks via the SGA are applied to adaptive fuzzy-neural control at the end of this thesis to illustrate the effectiveness and applicability of the proposed method.

CONTCENTS
ABSTRACT (In Chinese)…………………………………………………….i
ABSTRACT (In English)…………………………………………………..ii
ACKNOWLEDGEMENTS………………………………………………………….iii
CONTENTS…………………………………………………………………….iv
LIST OF FIGURES AND TABLES……………………………….…………….vi
CHAPTER 1 Introduction………………………………………………….1
CHAPTER 2 Fuzzy Control System…………………………………………………….5
2.1 Fuzzy Set and Set-Theoretical Operators……………………………..6
2.2 Fuzzifier……………………………………………………………….7
2.3 Defuzzifier…………………………………………………………….9
2.4 Fuzzy Rule Base……………………………………………………..10
2.5 Fuzzy Inference………………………………………………………11
CHAPTER 3 B-spline Fuzzy Neural Network (B-spline FNN)………………………..13
3.1 Knot vector…………………………………………………………..13
3.2 B-spline Curves……………………………………………………...14
3.3 B-spline Membership Function (BMF)……………………………...16
3.4 The Configuration of A B-spline FNN………………………………17
3.5 A B-spline FNN Inference Method………………………………….17
CHAPTER 4 Design of the FNN Identifiers by the Simplified Genetic Algorithms…..19
4.1 The Simplified Genetic Algorithm…………………………………..20
4.2 Basic Concept of Gas………………………………………………..20
4.3 Evolutionary Processes of the Simplified Genetic Algorithm (SGA).22
4.3.1 Population Initialization……………………………………….22
4.3.2 Fitness function………………………………………………...23
4.3.3 Single Point Crossover Operation……………………………..23
4.3.4 Sorting Operation……………………………………………...25
4.3.5 Mutation Operation……………………………………………25
4.4 Pseudo Code for The SGA…………………………………………..28
4.5 Computer Simulations……………………………………………….30
CHAPTER 5 INDIRECT ADAPTIVE FUZZY NEURAL NETWORK…………...…44
5.1 Control Objectives…………………………………………………...44
5.2 Certainty Equivalent Controller……………………………………...45
5.3 Supervisory Control…………………………………………….……46
5.4 Definition the Fitness Function of SGA-Based Indirect Adaptive Fuzzy-Neural Controller (SIAFC)………………………..……….48
CHAPTER 6 Simulations Results……………………………………………………...51
SHAPTER 7 Conclusions………………………………………………………………60
REFERENCES……………………………………………………………………...….61

References
[1] R. D. Lorenz, “Tuning of field oriented induction motor controllers for high-performacne applications,” IEEE Transactions on Industry Applications, Vol. IA-22, no 2, pp. 293-297, March/April 1986.
[2] S. K. Sul, “A novel technique of Rotor Resistance estimation considering variation of mutual inductance,” IEEE Transactions on Industry Applications, Vol. 25, no 3, pp. 578-587, July/August 1989.
[3] C. C. Chan, H. Wang, “An effective method of rotor resistance identification for high-performance induction motor vector control,” IEEE Transactions on Industrial Electronics, Vol. 37, no6, pp. 477-482, December 1990.
[4] G. C. D. Sousa, B. K. Bose, K. S. Kin, “Fuzzy logic based on-line tuning of slip gain for an indirect vector controlled induction motor drive,” IEEE/IECON Conf. Proc., pp. 1307-1311, 1995.
[5] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, no. 2, pp. 359-366, 1989.
[6] L.X. Wang and J.M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least squares learning," IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 807-814, 1992.
[7] Chi-Hsu Wang, Wei-Yen Wang, Tsu-Tian Lee, and Pao-Shun Tseng, “Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control,” IEEE Transactions on Systems Man and Cybernetics, Vol. 25, No. 5, pp. 841-851, May 1995.
[8] Li-Xin Wang, “Adaptive Fuzzy Systems and Control, ” Prentice Hall International, 1994.
[9] H. Nomura, I. Hayashi and N. Wakami, “A Self-Tuning Method of Fuzzy Control by Descend Method,” Proceedings of 4th IFSA Congress, Engineering, pp. 155-158, 1991.
[10] Z. Yang, T. Hachino, and T. Tsuji, “Model reduction with time delay combining the least-squares method with the genetic algorithm,” IEE Proc. — Control Theory Appl., Vol. 143, No. 3, 1996.
[11] C.T. Lin and C.P. Jou, “GA-based fuzzy reinforcement learning for control of a magnetic bearing system,” IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 30, No. 2, PP. 276 —289, April 2000.
[12] Wael A. Farag, Victor H. Quintana, and Germano Lambert-Torres, “A Genetic-Based Neuro-Fuzzy approach for modeling and control of dynamical systems,” IEEE Transactions on neural networks, Vol. 9, No. 5, Sept. 1998.
[13] H. Takagi, I. Hayashi, “Artificial-neural-network driven fuzzy reasoning,” Proc. IIZUKA 88, pp. 217-218, 1988.
[14] S. Horikawa, T. Furuhashi, Y. Uchikawa, “On fuzzy Modeling Using Fuzzy Neural Network with the back-Propagation Algorithm,” IEEE. Trans. on Neural Networks, Vol. 3, No. 5, pp. 801-806, 1992.
[15] Yih-Guang Lue, Wei-Yen Wang, Tsu-Tian Lee, “Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems,” IEEE Trans. On Robotics and Automation, Vol. 15, No. 5, pp. 805-817, October 1999.
[16] Wei-Yen Wang, Tsu-Tian Lee and Ching-Lang Liu, “Function Approximation Using Fuzzy Neural Networks with Robust Learning Algorithm,” IEEE Trans. on System Man and Cybernetics Part B, Vol. 27, No. 4, pp. 740-747, August 1997.
[17] Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Program, Springer-Verlag, 1996.
[18] D. Goldberg, Genetic Algorithms in Search, Optimisation, and Machine Learning, Addison-Wesley, 1989.
[19] D. Lawrence, Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.
[20] K. Kristinsson and G. Dumont, “System identification and control using genetic algorithms,” IEEE Transaction on System Man and Cybernetics, Vol. 22, pp. 1033-1046, 1992.
[21] B. Porter and A. Jones, “Genetic tuning of digital PID controllers,” Electronic Letters, Vol. 28, pp. 843-844, 1992.
[22] C. Hsu, K. Tse and C. Wang, “Digital Redesign of Continuous Systems with Improved Suitability Using Genetic Algorithms,” Electronics Letters, Vol. 33, no. 15, pp. 1345-1347, 1997.
[23] R. Caponetto, L. Fortuna, S. Graziani, and M. Xibilia, “Genetic algorithms and applications in system engineering: a survey,” Trans. Inst. Meas. Control, Vol. 15, pp. 143-156, 1993.
[24] Peter Merz and Bernd Freisleben, “Fitness Landscape Analysis and Memetic Algorithms for the Quadratic Assignment Problem,” IEEE Trans. On Evolutionary Computation, vol. 4, no. 4, pp. 337-352, 2000.
[25] G W Game, and C D James, “The Application of Genetic Algorithms to the Optimal Selection of Parameter Values in Neural networks for Attitude Control System,” IEEE Colloquium on High Accuracy Platform Control in Space, pp. 3/1-3/3, 1993.
[26] G. W. Game, C. D. James, “The Application of Genetic Algorithms to the Optimal Selection of Parameter Values in Neural networks for Attitude Control System,“ IEEE Colloquium on High Accuracy Platform Control in Space, pp. 3/1-3/3, 1993.
[27] Yu Nong, Li Yushu and Xu Qifu, “Genetic Training Algorithm of Morphological Filters,” WCCC-ICSP 2000. 5th International Conference on Signal Processing Proceeding, Vol. 1, pp. 476-479, 2000.
[28] G. Rovithakis, M. Maniadakis, and M. Zervakis, “A Genetically optimized artificial Network structure for Feature Extraction and Classification of vascular tissue fluorescence spectrums,” Fifth IEEE International workshop on Computer Architectures for Machine Perception, pp. 107-111, 2000.
[29] Holland, J. H., “Genetic Algorithm,” Sci. Am., pp. 66-72, July, 1992.
[30] Goldberg D. E., Genetic Algorithm in search, Optimization and Machine Learning, Reading, MA:Addision-Weskey, 1989.
[31] Haupt R. L., and Haupt S. E., Practical Genetic Algorithms, Wiley Interscience, 1998.
[32] Man, Tang and Kwong, Genetic Algorithms Springer, 1999.
[33] Mitchell, M., An Introduction to Genetic Algorithms, Cambridge, MA: The
[34] K. Kristinsson and G. Dumont, “System identification and control using genetic algorithms,” IEEE Transaction on System Man and Cybernetics, Vol. 22, pp. 1033-1046, 1992.
[35] B. Porter and A. Jones, “Genetic tuning of digital PID controllers,” Electronic Letters, Vol. 28, pp. 843-844, 1992.
[36] C. Hsu, K. Tse and C. Wang, “Digital Redesign of Continuous Systems with Improved Suitability Using Genetic Algorithms,” Electronics Letters, Vol. 33, no. 15, pp. 1345-1347, 1997.
[37] R. Caponetto, L. Fortuna, S. Graziani, and M. Xibilia, “Genetic algorithms and applications in system engineering: a survey,” Trans. Inst. Meas. Control, Vol. 15, pp. 143-156, 1993.
[38] Peter Merz and Bernd Freisleben, “Fitness Landscape Analysis and Memetic Algorithms for the Quadratic Assignment Problem,” IEEE Trans. On Evolutionary Computation, vol. 4, no. 4, pp. 337-352, 2000.
[39] G W Game, and C D James, “The Application of Genetic Algorithms to the Optimal Selection of Parameter Values in Neural networks for Attitude Control System,” IEEE Colloquium on High Accuracy Platform Control in Space, pp. 3/1-3/3, 1993.
[40] C.H. Wang, H.L. Liu and C.T. Lin, “Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm,” IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31, No. 3 , pp.467 —475, June 2001.
[41] S.W. Moon and S.G. Kong, “Block-based neural networks,” IEEE Transactions on Neural Networks, Vol. 12, No. 2, pp. 307 —317, March 2001.
[42] C.T. Lin and C.P. Jou, “GA-based fuzzy reinforcement learning for control of a magnetic bearing system,” IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 30, No. 2, PP. 276 —289, April 2000.
[43] S. S. Sastry and A. lsidori, “Adaptive control of linearizable system,” IEEE Trans. Automat. Contr., vol. 34, pp. 1123-1131, Nov. 1989.
[44] R. Marino and P. Tomei, “Globally adaptive output-feedback control of nonlinear systems, part I: Liinear parameterization,” IEEE Trans. Automat. Contr., vol. 38, pp. 17-32, Jan. 1993.
[45] B. Jakubczyk, “Feedback linearization of discrete time systems,” Syst. Contr. Lett., vol. 9, pp. 411-416, 1987.
[46] S. Monaco and D. Normand-Cyrot, “Minimum-phase nonlinear discrete-time systems and feedback stabilization,” in Proc. IEEE Conf. Decision and Control, pp. 979-986, 1987.
[47] B. S. Chen , C. H. Lee, and Y. C. Cheng, “ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach,” IEEE Trans. Fuzzy Syst., Vol. 4, pp. 23-43, Feb. 1996.
[48] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., Vol. 1, pp. 146-155, May 1993.
[49] J. L. Castro, “Fuzzy logical controllers are universal approximators,” IEEE Trans. Syst., Man, Cybern., Vol. 25, pp 629-635, Apr. 1995.
[50] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, No. 1, 1973, pp. 28-44.
[51] E. H. Mamdani, J. J. Ostergaard, and E. Lembessis, “Uses of fuzzy logic for implementing rule-base control of industrial processes,” Fuzzy Sets and Systems, Vol. 15, No. 1, pp. 116-132, 1985.
[52] Cheun Chien Lee, “Fuzzy Logic in Control System : Fuzzy Logic Controller-Part I,” IEEE Transactions on System, Man and Cybernetics, Vol. 20, pp. 404-418, March/AprII, 1990.
[53] Cheun Chien Lee, “Fuzzy Logic in Control System : Fuzzy Logic Controller-Part II,” IEEE Transactions on System, Man and Cybernetics, Vol. 20, pp. 419-435, March/AprII, 1990.
[54] Wael A. Farag, Victor H. Quintana, and Germano Lambert-Torres, “A Genetic-Based Neuro-Fuzzy approach for modeling and control of dynamical systems,” IEEE Transactions on neural networks, Vol. 9, No. 5, Sept. 1998.
[55] Isidori, A., Nolinear Control Systems. Berlin: Springer-Verlag, 1989.
[56] Sastry, S. and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Englewood Cliffs, NJ: Prentice-Hall, 1989.
[57] Slotine, J. E. and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top