跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠亨
論文名稱:具中繼選擇合作式通信系統之極大訊雜比檢測機制
論文名稱(外文):Maximum SNR Detection for Selection-Relaying Cooperative System
指導教授:謝世福
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院通訊與網路科技產業專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:69
中文關鍵詞:合作式通信系統中繼點極大訊雜比檢測機制
外文關鍵詞:Cooperative SystemRelayingmaximum SNRDetection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
合作式通訊系統就目前來說,是一個有用的方法來實現多輸入多輸出天線系統。但是,如何在目的端設計一個理想的接收機,使得此接收機的效能可以好到與以使用最大概似函數的方式設計的接收機的效能一樣是一個主要的議題。因為如此,在解碼與傳送的系統中我們在目的端設計一個接收機,且接收機可以組合接收到的信號。我們所提的架構是使用當中繼點會自行判斷是否要執行解碼與傳送的行為之臨界點選擇的中繼點,並且在目的端使用修正權重來減少因為中繼點決定錯誤的效應。我們也有試著去找尋適合中繼點使用的最佳臨界值在我們所建議的架構中。除此之外,我們有推導出此架構當使用二位元相位數位調變信號的理論位元錯誤率。我們將會發現理論錯誤率將會與模擬結果貼近。我們也有使用高信號雜訊比下的近似方式來簡化理論錯誤率。從這簡化版的理論錯誤率,我們可以得知建議系統的多樣性階數將會是在1.5∼2之間,其結果與前人所做的結論相同。
The cooperative communication is to realize the MIMO system. The optimum receiver is a highly-complex ML receiver. Hence, the major issue is to design a receiver with low complexity at the destination node with comparable performance as that of the ML receiver. Therefore, we design a receiver to combine the received signals at the Destination node under Decode-and-Forward protocol. The proposed scheme uses the threshold-selection Relay and also uses the maximum SNR detection at the Destination node to minimize the effect that Relay made wrong decision. With this proposed scheme, we also try to find out the optimum threshold value of the Relay. Besides, we derive theoretical bit-error-rate (BER) with BPSK signals for the proposed scheme. We also show that the theoretical BER is tight to the simulated results. The high SNR approximation is made to simplify the theoretical BER, from which we could know that the diversity order of the proposed system lies in 1.5~2 which agrees with previous work.
Chapter 1 Introduction 1
Chapter 2 The Cooperative System Model 5
2.1 The Decode-and-Forward Protocol 5
2.2 The Amplify-and-Forward Protocol 7
2.3 The Destination Combining Methods 8
2.3.1 MRC Combining Method 8
2.3.2 ML Combining Method 9
Chapter 3 Maximum SNR Detection for Selection Relay 12
3.1 The Selection Relay Method 13
3.2 Maximum SNR Detection 17
3.3 The Proposed Architecture 21
3.4 Two-Threshold Values in Selection Relay 22
Chapter 4 Theoretical BER of The Max-SNR Selection-Relay Architecture 24
4.1 Theoretical BER Analysis 24
4.1.1 Classification of The Proposed System Scenarios 25
4.1.2 Occurrence probability of two Scenarios 26
4.1.3 Error probability of two Scenarios 27
4.2 High SNR Approximation Analysis 38
4.2.1 The Approximated Theoretical BER 38
4.2.2 Derivation of Proposed System Diversity Order 44
Chapter 5 Computer Simulations 51
5.1 Under Relay in Middle Status 52
5.2 Under Relay Close to Source Status 56
5.3 Under Relay Close to Destination Status 59
5.4 High SNR Approximation Simulations 63
5.5 Under 2 Threshold Values in Selection Relay 65
Chapter 6 Conclusions 67
Bibliography 68
[1]. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity, part I: system description”, IEEE Trans. Commun., vol. 51 no. 11, pp.1927-1938 Nov. 2003.
[2]. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity, part II: implementation aspects and performance analysis”, IEEE Trans. Commun., vol. 51 no. 11, pp.1939-1948 Nov. 2003.
[3]. Xin Lin, and Weigeng Su “BER performance analysis of the optimum ML receiver for Decode-and-Forward cooperative protocol”, IEEE ICASSP vol. 3 pp. 15-20 Apr. 2007.
[4]. Y. Jing and H. Jafarkhani “Network Beamforming using relays with perfect channel information”, IEEE ICASSP vol. 3 pp.473-476 Apr. 2007
[5]. J. N. Laneman and G. W. Wornell “Energy-efficient Antenna sharing and Relaying for Wireless Networks”, IEEE WCNC vol. 1 pp. 7-12 Sep. 2000.
[6]. W. P. Siriwongpariat, T. Himsoon, Weifeng. Su. and K. J. Ray. Liu “Optimum Threshold-Selection Relaying for Decode-and-Forward Cooperation Protocol”, IEEE WCNC vol. 2 pp. 1015-1020 2006.
[7]. Deqiang Chen, and J. N. Laneman “Modulation and Demodulation for Cooperative Diversity in Wireless Systems” IEEE Trans. Commun. vol. 5 no.7 pp. 1785-1794 July 2006.
[8]. T. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman “High Performance Cooperative Demodulation with Decode-and-Forward Relays”, IEEE Trans. Commun. vol.55 no.7 pp.1427-1438 July 2007.
[9]. D, Chen and J. N. Laneman “Cooperative Diversity for Wireless Fading Channels without Channel State Information”, IEEE ACSSC vol.2 pp. 1307-1312 Nov. 2004.
[10]. D. Chen and J. N. Laneman “Noncoherent Demodulation for Cooperative Diversity in Wireless Systems”, IEEE Globecom vol.1 pp.31-35 2004.
[11]. J. G. Proakis, “Digital Communications”. 4th Ed., McGraw-Hill, Inc. 2001.
[12]. M. K. Simon and M. S. Alouini, “Digital Communication over Fading Channels: A Unified Approach to Performance Analysis”, John Wiley and Sons 2000.
[13]. H. Stark and J. W. Woods, “Probability and Random Processes with Application to Signal Processing”, 3rd Ed., Prentice Hall, Inc. 2002.
[14]. H. Vincent Poor, “ An Introduction to Signal Detection and Estimation”, 2nd Ed., Springer-Verlag 1994.
[15]. T. S. Rappaport, “Wireless Communications: Principle and Practice”, Prentice Hall, 1996.
[16]. D. Tse and P. Viswanath, “Fundamentals of Wireless Communication”, Cambridge University Press 2005.
[17]. “http://integrals.wolfram.com/index.jsp”, Wolfram Research Inc. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top