|
[1]Peskin, C. S., 1972, Flow patterns around heart valves - Numerical method, J. Comput. Phys., 10(2), pp. 252-271. [2]Fadlun, E. A., Verzicco, R., Orlandi, P., and Mohd-Yusof, J., 2000, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161(1), pp. 35-60. [3]Feng, Z. G., and Michaelides, E. E., 2005, Proteus: a direct forcing method in the simulations of particulate flows, J. Comput. Phys., 202(1), pp. 20-51. [4]Uhlmann, M., 2005, An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209(2), pp. 448-476. [5] Lin, S. Y., Chin, Y. H., Hu, J. J., and Chen, Y. C., 2011, A pressure correction method for fluid-particle interaction flow: Direct-forcing method and sedimentation flow, Int. J. Numer. Meth. Fl., 67(12), pp. 1771-1798. [6]Hirt, C. W., and Nichols, B. D., 1981, Volume of fluid (VOF) Method for the dynamics of free boundaries, J. Comput. Phys., 39(1), pp. 201-225. [7]Pilliod, J. E., and Puckett, E. G., 2004, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys., 199(2), pp. 465-502. [8]Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S., 1999, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152(2), pp. 423-456. [9]Lin, S. Y., Chin, Y. H., Wu, C. M., Lin, J. F., and Chen, Y. C., 2012, A pressure correction-volume of fluid method for simulation of two-phase flows, Int. J. Numer. Meth. Fl., 68(2), pp. 181-195. [10]Osher, S., and Sethian, J. A., 1988, Fronts propagating with curvature-dependent Speed - algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79(1), pp. 12-49. [11]Ye, T., Shyy, W., and Chung, J. N., 2001, A fixed-grid, sharp-interface method for bubble dynamics and phase change, J. Comput. Phys., 174(2), pp. 781-815. [12] Uzgoren, E., Sim, J., and Shyy, W., 2009, Marker-based, 3-D adaptive cartesian grid method for multiphase flow around irregular geometries, Commun. Comput. Phys., 5(1), pp. 1-41. [13] Monaghan, J. J., 1992, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astr., 30, pp. 543-574. [14] Monaghan, J. J., 1994, Simulating free-surface flows with SPH, J. Comput. Phys., 110(2), pp. 399-406. [15] Bombardelli, F. A., Hirt, C. W., and Garcia, M. H., 2001, Computations of curved free surface water flow on spiral concentrators - Discussion, J. Hydraul. Eng.-ASCE, 127(7), pp. 629-631. [16] Osher, S., and Chakravarthy, S., 1984, High-resolution schemes and the entropy condition, SIAM J. Numer. Anal., 21(5), pp. 955-984. [17] Lin, S. Y., and Yu, Z. X., 2002, Vortex structure and strength of secondary flows in model aortic arches, Int. J. Numer. Meth. Fl., 40(3-4), pp. 379-389. [18] Lin, S. Y., and Chin, Y. S., 1995, Comparison of higher resolution Euler schemes for aeroacoustic computations, AIAA J., 33(2), pp. 237-245. [19] Hoomans, B. P. B., Kuipers, J. A. M., Briels, W. J., and vanSwaaij, W. P. M., 1996, Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach, Chem. Eng. Sci., 51(1), pp. 99-118. [20] Deen, N. G., Annaland, M. V., Van der Hoef, M. A., and Kuipers, J. A. M., 2007, Review of discrete particle modeling of fluidized beds, Chem. Eng. Sci., 62(1-2), pp. 28-44. [21] Cundall, P. A., and Strack, O. D. L., 1979, Discrete numerical-model for granular assemblies, Geotechnique, 29(1), pp. 47-65. [22]Tsuji, Y., Kawaguchi, T., and Tanaka, T., 1993, Discrete particle simulation of 2-dimensional fluidized-bed, Powder Technol., 77(1), pp. 79-87. [23] Zhang, X., and Vu-Quoc, L., 2002, Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions, Int. J. Impact. Eng., 27(3), pp. 317-341. [24]Stevens, A. B., and Hrenya, C. M., 2005, Comparison of soft-sphere models to measurements of collision properties during normal impacts, Powder Technol., 154(2-3), pp. 99-109. [25] Zhang, S., Kuwabara, S., Suzuki, T., Kawano, Y., Morita, K., and Fukuda, K., 2009, Simulation of solid-fluid mixture flow using moving particle methods, J. Comput. Phys., 228(7), pp. 2552-2565. [26] Raad, P. E., and Bidoae, R., 2005, The three-dimensional Eulerian-Lagrangian marker and micro cell method for the simulation of free surface flows, J. Comput. Phys., 203(2), pp. 668-699. [27]Gómez-Gesteira, M., and Dalrymple, R. A., 2004, Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure, J. Waterw. Port. C-ASCE, 130(2), pp. 63-69. [28]Silvester, T. B., Cleary, P.W., Wave-structure interaction using smoothed particle hydrodynamics, Proc. The 5th International Conference on CFD in the Process Industries. [29] Kleefsman, K. M. T., Fekken, G., Veldman, A. E. P., Iwanowski, B., and Buchner, B., 2005, A volume-of-fluid based simulation method for wave impact problems, J. Comput. Phys., 206(1), pp. 363-393. [30] Shieh, C. L., Ting, C. H., and Pan, H. W., 2008, Impulsive force of debris flow on a curved dam, Int. J. Sediment. Res., 23(2), pp. 149-158. [31] Ting, C.H., 2009, Impulsive force resulted from debris flow acting on the sabo dam, Ph.D, National Cheng Kung University. [32]Jiang, Y., Chen, C. P., and Tucker, P. K., 1991, Multigrid solution of unsteady Navier-Stokes equations using a pressure method, Numer. Heat Tr. A-Appl., 20(1), pp. 81-93. [33]Issa, R. I., 1986, Solution of the Implicitly Discretized Fluid-Flow Equations by Operator-Splitting, J. Comput. Phys., 62(1), pp. 40-65. [34] Lin, S. Y., Chen, Yi. Cheng, 2013, A pressure correction-volume of fluid method for simulations of fluid–particle interaction and impact problems, Int. J. Multiphase Flow, 49, p. 18. [35]Pan, K. L., and Yin, G. C., 2012, Parallel strategies of front-tracking method for simulation of multiphase flows, Comput. Fluids., 67, pp. 123-129. [36]Amritkar, A., Tafti, D., Liu, R., Kufrin, R., and Chapman, B., 2012, OpenMP parallelism for fluid and fluid-particulate systems, Parallel Comput., 38(9), pp. 501-517. [37]Hoeflinger, J., Alavilli, P., Jackson, T., and Kuhn, B., 2001, Producing scalable performance with OpenMP: Experiments with two CFD applications, Parallel Comput., 27(4), pp. 391-413. [38] Hoeflinger, J., Kuhn, B., Nagel, W., Petersen, P., Rajic, H., Shah, S., Vetter, J., Voss, M., and Woo, R., 2001, An integrated performance visualizer for MPI/OpenMP programs, OpenMP Shared Memory Parallel Programming, Proceedings, 2104, pp. 40-52. [39] Norden, M., Holmgren, S., and Thune, M., 2006, OpenMP versus MPI for PDE solvers based on regular sparse numerical operators, Future Gener. Comp. Sy., 22(1-2), pp. 194-203. [40] Tafit, D., 2001, GenIDLEST – a scalable parallel computational tool for simulating complex turbulent flows, Proc. In Proceedings of the ASME Fluids Engineering Division, 256, pp. 347-356. [41]Freund, R. W., 1993, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear-systems, SIAM J. Sci. Comput., 14(2), pp. 470-482. [42] Armfield, S. W., 1991, Finite-difference solutions of the Navier-Stokes equations on staggered and non-staggered grids, Comput. Fluids, 20(1), pp. 1-17. [43] Choi, S. K., Nam, H. Y., and Cho, M., 1994, Systematic comparison of finite-volume calculation methods with staggered and nonstaggered grid arrangements, Numer. Heat Tr. B-Fund, 25(2), pp. 205-221. [44] Choi, S. K., Nam, H. Y., and Cho, M., 1994, Use of staggered and nonstaggered grid arrangements for incompressible-flow calculations on nonorthogonal grids, Numer. Heat. Tr. B-Fund., 25(2), pp. 193-204. [45] Melaaen, M. C., 1992, Calculation of fluid-flows with staggered and nonstaggered curvilinear nonorthogonal grids - the Theory, Numer. Heat Tr. B-Fund., 21(1), pp. 1-19. [46] Acharya, S., and Moukalled, F. H., 1989, Improvements to incompressible-flow calculation on a nonstaggered curvilinear grid, Numer. Heat Tr. B-Fund., 15(2), pp. 131-152. [47] Date, A. W., 1993, Solution of Navier-Stokes equations on non-staggered grid, Int. J. Heat Mass Tran., 36(7), pp. 1913-1922. [48]Date, A. W., 1996, Complete pressure correction algorithm for solution of incompressible Navier-Stokes equations on a nonstaggered grid, Numer. Heat Tr. B-Fund., 29(4), pp. 441-458. [49]Majumdar, S., 1988, Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids, Numer. Heat Tr. A-Appl., 13(1), pp. 125-132. [50] Rhie, C. M., and Chow, W. L., 1983, Numerical study of the turbulent-flow past an airfoil with trailing edge separation, AIAA J., 21(11), pp. 1525-1532. [51]Yu, B., Kawaguchi, Y., Tao, W. Q., and Ozoe, H., 2002, Checkerboard pressure predictions due to the underrelaxation factor and time step size for a nonstaggered grid with momentum interpolation method, Numer. Heat Tr. B-Fund., 41(1), pp. 85-94. [52]Yu, B., Tao, W. Q., Wei, J. J., Kawaguchi, Y., Tagawa, T., and Ozoe, H., 2002, Discussion on momentum interpolation method for collocated grids of incompressible flow, Numer. Heat Tr. B-Fund., 42(2), pp. 141-166. [53]Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D., and Periaux, J., 2001, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., 169(2), pp. 363-426. [54] Malone, K. F., and Xu, B. H., 2008, Determination of contact parameters for discrete element method simulations of granular systems, Particuology, 6(6), pp. 521-528. [55] Hofler, K., and Schwarzer, S., 2000, Navier-Stokes simulation with constraint forces: Finite-difference method for particle-laden flows and complex geometries, Phys. Rev. E, 61(6), pp. 7146-7160. [56] Lai, M. C., and Peskin, C. S., 2000, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160(2), pp. 705-719. [57]Lee, C., 2003, Stability characteristics of the virtual boundary method in three-dimensional applications, J. Comput. Phys., 184(2), pp. 559-591. [58] White, F. M., 2006, Viscous fluid flow, Third Ed. Mc Graw Hill. [59] Armaly, B. F., Durst, F., Pereira, J. C. F., and Schonung, B., 1983, Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech., 127(Feb), pp. 473-496. [60] Barton, I. E., 1995, A numerical study of flow over a confined backward-facing step, Int. J. Numer. Meth Fl., 21(8), pp. 653-665. [61]Taneda, S., 1956, Experimental investigation of the wake behind a sphere at low Reynolds numbers, J. Phys. Soc. Jpn., 11(10), pp. 1104-1108. [62] Wu, J. S., and Faeth, G. M., 1993, Sphere wakes in still surroundings at intermediate Reynolds numbers, AIAA J., 31(8), pp. 1448-1455. [63] Tomboulides, A. G., 1993, Direct and large-eddy simulation of wake flows: flow past a sphere, PhD, Princetion University. [64] Achenbac.E, 1974, Vortex shedding from spheres, J. Fluid Mech., 62, pp. 209-221. [65] Fornberg, B., 1988, Steady viscous- Flow past a sphere at high Reynolds numbers, J. Fluid Mech., 190, pp. 471-489. [66] Johnson, T. A., and Patel, V. C., 1999, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech., 378, pp. 19-70. [67] Marella, S., Krishnan, S., Liu, H., and Udaykumar, H. S., 2005, Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations, J. Comput. Phys., 210(1), pp. 1-31. [68] Clift, R., Grace, J.R., Weber, M.E., 1978, Bubbles, Drops and Particles., Acdemic Press: New York. [69] ten Cate, A., Nieuwstad, C. H., Derksen, J. J., and Van den Akker, H. E. A., 2002, Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Phys. Fluids, 14(11), pp. 4012-4025. [70]Vu-Quoc, L., Lesburg, L., and Zhang, X., 2004, An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation, J. Comput. Phys., 196(1), pp. 298-326. [71] Vu-Quoc, L., Zhang, X., and Lesburg, L., 2000, A normal force-displacement model for contacting spheres accounting for plastic deformation: Force-driven formulation, J. Appl. Mech.-T. ASME, 67(2), pp. 363-371. [72] Johnson, K. L., 1985, Contact mechanics, Cambridge University Press, New York. [73]Hertz, H., 1882, Ueber die Berührung fester elastischer Körper, J. Reine Angew. Math., 92, pp. 156-171. [74] Mindlin R.D., D. H., 1952, Elastic spheres in contact under varying oblique forces, ASME J. Appl. Mech., 20, pp. 327-344. [75] Kelecy, F. J., and Pletcher, R. H., 1997, The development of a free surface capturing approach for multidimensional free surface flows in closed containers, J. Comput. Phys., 138(2), pp. 939-980. [76] Martin, J. C., Moyce W.J., 1952, An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. R. Soc. A, 244, pp. 312-324. [77] Feng, Z. G., and Michaelides, E. E., 2004, The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys., 195(2), pp. 602-628. [78]Lin, S. Y., Lin, C. T., Chin, Y. H., and Tai, Y. H., 2011, A direct-forcing pressure-based lattice Boltzmann method for solving fluid-particle interaction problems, Int. J. Numer. Meth. Fl., 66(5), pp. 648-670. [79]Tyvand, P. A., and Miloh, T., 1995, Free-surface flow due to impulsive motion of a submerged circular-cylinder, J. Fluid. Mech., 286, pp. 67-101. [80]Greenhow, M., and Moyo, S., 1997, Water entry and exit of horizontal circular cylinders, Phil. Trans. R. Soc. A, 355(1724), pp. 551-563. [81] Lin, P. Z., 2007, A fixed-grid model for simulation of a moving body in free surface flows, Comput. Fluids, 36(3), pp. 549-561. [82] Currie, I. G., 2004, Fundamental mechanics of fluids, Second Ed. Mc Graw Hill.
|