跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宗延
研究生(外文):Zong-Yan Chen
論文名稱:以光子晶體為基礎設計全光式分波多工器
論文名稱(外文):The design of all-optical Wavelength Division Multiplexing Devices Based on Photonic Crystals
指導教授:吳曜東吳曜東引用關係
指導教授(外文):Yaw-Dong Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:101
中文關鍵詞:光子晶體波長分波多工器平頂通帶濾波器
外文關鍵詞:Photonic crystalWavelength Division MultiplexingFlat-top
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文是於光子晶體中製造缺陷來做成全光式元件應用。光子晶體是一種微結構系統,因其介電常數呈週期性變化而具有光子能隙,波長落在此光子能隙中的光子無法通過光子晶體結構,因而可藉由破壞光子晶體的週期性來獲得缺陷,在光子晶體內植入缺陷,形成能循特定路徑引導光傳遞的波導,亦可製造能將光侷限於非常小空間的微共振腔。吾人於本論文中在此週期性結構中藉由晶體缺陷、平面波展開法與有限時域差分法等方法來設計與模擬全光式光子晶體元件結構。首先,吾人利用改變光子晶體共振腔中缺陷的大小可明顯地從結構表面汲取出特定波長,在利用改變缺陷腔的大小來引導特定的波長沿著波導傳遞,因此吾人可利用此結構達到分波多工器的功能。此外,吾人藉由利用干涉儀的相位差之特性,進行量測與控制相位為π/2設計出平頂通帶濾波器,進而實現波長分波多工器之應用。有鑒於奈米技術的提昇,在積體電路上實現光子晶體的元件將是一大突破,因此在超高速與超高容量的光通訊與資訊處理應用中,這些元件將
扮演極重要的關鍵角色。
In this thesis, some all optical devices based on 2D PCs with defects are discussed. Photonic crystals (PCs) are nano-structured materials in which a periodic variation of the dielectric constant of the material results in a photonic band gap. Photons with wavelengths or energies in this band gap cannot travel through the crystal. By introducing defects into PCs, it is possible to build waveguides that can channel light along certain paths. It is also possible to construct micro-cavities that can localize photons in extremely small volumes. In this thesis, we can design and simulate photonic crystal optical devices structure by using crystal defect, plane-wave expansion method and finite-difference time-domain method. Firstly, by properly varying the size of the defect and modulating the size of cavity on the PCs, it could really drop the particular wavelength from the surface and introduced the particular wavelength into the waveguide. We proposed the structures that would function as Wavelength-Division-Multiplexing (WDM). Secondly, we utilize the feature of the phase difference in Mach-Zehnder interference structure to measure and control the phase-shifted to π/2 in three point defects waveguide. Therefore, the bandpass filter based on 2-D photonic crystals is proposed, and realize further the function as Coarse-Wavelength-Division-Multiplexing (CWDM). Because nano-technology has been making great progress steadily, it surely can be used to demonstrate a practical breakthrough in which the devices based on the PC integrated circuits are realized. These devices will be potential key components in the applications of ultra-high-speed and ultra-high-capacity optical communications and optical data processing systems.
Abstract I
Acknowledgment IV
Contents V
List of Figures VII
List of Tables XI
List of Symbols XII
Chapter 1 Introduction 1
1.1. General Reviews of Photonic Crystals 1
1.2 Photonic Crystal Structures 3
1.2.1 Photonic Band Gap (PBG) 3
1.2.2 Defects 4
1.2.3 Photonic Crystal Waveguides 5
1.3 Applications and Motivation of Photonic Crystals 5
1.3. Organizations of the Thesis 9
Chapter 2 Basic Theory and Simulation Method 20
2.1. Introduction 20
2.2 Plane Wave Expansion Method (PWE) 21
2.3 Finite-Difference Time-Domain Method (FDTD) 25
Chapter 3 High Efficiency Optical Triplexer Filter based on 2-D Photonic Crystals 32
3.1 Introduction 32
3.2 Structure Analysis 35
3.3 Numerical Results and Discussions 36
3.4 Summary 37
Chapter 4 Coarse-Wavelength-Division-Multiplexing (CWDM) System Based on Phase-Shifted Photonic Crystal Coupled Resonator Optical Waveguide (CROW) 45
4.1. Introduction 45
4.2. Bandpass Filters based on Phase-shifted Photonic Crystal Coupled Resonator Optical Waveguides 46
4.3. Bandpass Filters in Comparison with different photonic crystal structures 49
4.4. A New Approach of Multi-channel Coarse Wavelength Division Multiplexing with Coupled Resonator Optical Waveguides 52
4.5 Summary 57
Chapter 5 Conclusions 90
5.1. Summary 90
5.2. Suggestions for Future Researches 91
References 92
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physica and electronics,” Phy. Rev. Lett., Vol. 58, pp. 2059-2062, 1987.
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., Vol. 58, pp. 2486-2489, 1987.
[3] Shanhui Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express., Vol. 3, pp. 4-11, 1998.
[4] Bong-Shik Song, Takashi Asano, Yoshihiro Akahane, Yoshinori Tanaka, and Susumu Noda, “Multichannel Add/Drop Filter Based on In-Plane Hetero Photonic Crystals,” J. Lightwave Technol.., Vol. 23, pp. 1449-1455, 2005.
[5] Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Pratrher, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt., Vol. 40, pp. 2247-2252, 2001.
[6] Sangin Kim, Ikmo park, Hanjo Lim, and Chul-Sik Kee, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Opt. Express, Vol. 12, pp. 5518-5525, 2004.
[7] Honglian Ren, Chun Jian, Weisheng Hu, Mingyi Gao, Jingyuan Gao and Jingyuan Wangm, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express, Vol. 14, pp. 2446-2458, 2006.
[8] T. Bada, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electronics, Vol. 38, pp. 743, 2002.
[9] N. Moll, G.L. Bona, “Comparison of three-dimensional photonic slab waveguides with two-dimensional photonic crystal waveguides: Efficient butt coupling into these photonic crystal waveguides,” J. Appl. Phys., Vol. 93, pp. 4986, 2003.
[10] J. Moosburger, M. Kamp, A. Forchel, U. Oesterle, and R. Houdré, “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities,” J. Appl.Phys., Vol. 92, pp. 4791, 2002.
[11] A. Scherer, O. Painter, J. vuckovic, M. Loncar, T. Yoshie, “Photonic Crystals for Confining, Guiding, and Emitting Light,” IEEE trans. Nanotechnology, Vol. 1, pp. 4, 2002.
[12] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature, Vol. 390, pp. 143, 1997.
[13] J. Sharee, M. Nab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express, Vol. 11, pp. 2927-2939, 2003.
[14] H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed waveguide grating,” J. Lightwave Technol., Vol.12, pp.989-995, 1994
[15] Dragone, “Efficient N X N star couplers using Fourier optics,” J. Lightwave Technol., Vol.7, pp.479-489, 1989.
[16] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication.,” Appl. Phys. Lett., Vol.32, pp.647-649, 1978.
[17] Sangin Kim, Ikmo park, Hanjo Lim, and Chul-Sik Kee, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Opt. Express, Vol. 12, pp. 5518-5525, 2004.
[18] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength dependent angular beam steering.” Appl. Phys. Lett., Vol.74, pp.1370-1372, 1999.
[19] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers.” J. Lightwave Technol., Vol.19, pp.1970-1975, 2001.
[20] A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt., Vol.40, pp.2247-2252, 2001.
[21] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamaura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, Vol.58, pp.R10096-R10099, 1998.
[22] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamaura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals toward microscale lightwave circuits,” J. Lightwave Technol.,” Vol.17, pp.2032-2038, 1999.
[23] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamaura, T. Sato, and S. Kawakami, 1999, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett., Vol.74, pp.1212-1214, 1999.
[24] B. Gralak, S. Enoch, and G. Tayeb, 2000, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A., Vol.17, pp.1012-1020, 2000.
[25] T. Baba, and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE J. Quantum Electron., Vol.38, pp.909-914, 2002.
[26] R. D. Meade, A. Devenyi, J. D. Joannopoulous, O. L. Alerthand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phy., Vol.75, pp.4753-4755, 1994.
[27] S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, 1995, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B, Vol.12, pp.1267-1272, 1995.
[28] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, , “High transmission through sharp bends in photonic crystal,” Phys. Rev. Lett., Vol.77, pp.3787-3790, 1996.
[29] S. Y. Lin, E. Chow, V. Hietch, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of light in a photonic crystal,” Science, Vol.282, pp. 274-278, 1998.
[30] A. Mekis, S. Fan, and J. D. Joannopoulos, 1998, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B, Vol.58, pp.4809-4817, 1998.
[31] S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B, Vol.18, pp.162-165, 2001.
[32] E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J.D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic crystal waveguide bends at 1.55 um wavelengths,” Opt. Lett., Vol.26, pp.286-288, 2001.
[33] J. N. Winn, R. D. Meade, and J. D. Joannopoulos, “Two-dimensional photonic band-gap materials,” J. of Modern Optics, Vol.41, pp.257-273, 1994.
[34] O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B, Vol.16, pp.275-285, 1999.
[35] J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E, Vol.65, pp.016608-1-11, 2001.
[36] S. Y. Lin, E. Chow, S. G. Johnson, and J.D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett., Vol.26, pp.1903-1905, 2001.
[37] K. Srinivasan, P. E. Barclay, and O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett., Vol.83, pp.1915-1917, 2003.
[38] D. Ohnishi, K. Sakai, M. Imada, and S. Noda, “Continuous wave operation of surface emitting two-dimensional photonic crystal laser,” Electron. Lette., Vol.39, pp.612-614, 2003.
[39] H. Hirayama, T. Hamano, and Y. Aoyagi, “Novel surface emitting laser diode using photonic band-gap crystal cavity,” Appl. Phys. Lett., Vol.69, pp.791-793, 1996.
[40] D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express, Vol.12, pp.1562-1568, 2004.
[41] M. Yokoyama, S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express, Vol.13, pp.2869-2880, 2005.
[42] M. Fujita, T. Ueno, K. Ishihara, T. Asano, and S. Noda, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett., Vol.85, pp.5769-5771, 2004.
[43] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett., Vol.75, pp.1036-1038, 1999.
[44] T. F. Krauss, R. M. De, and L. Rue, “Photonic crystals in the optical regime past, present and future,” Progress in Quantum Electron, Vol.23, pp.51-96, 1999.
[45] M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Japan. J. Appl. Phys., Vol. 44, pp.3669-3677, 2005.
[46] M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Express, Vol.28, pp.1525-1527, 2003.
[47] F. Cuesta, A. Griol, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett., Vol.39, pp.455-456, 2003.
[48] M. Shirane, A. Gomyo, K. Miura, H. Yamada, “Optical directional coupler based on autocloned photonic crystals,” Electcon. Lett., Vol.39, pp.53-54, 2003.
[49] J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, “Photonic crystal waveguide directional coupler as wavelength selective optical filter,” Optics Communication, Vol.230, pp.387-392, 2003.
[50] J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., Vol.19, pp.1547-1549, 1996.
[51] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., Vol.22, pp.961-963, 1997.
[52] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, and M. V. Andres, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett., Vol.24, pp.276-278, 1999.
[53] J. Broeng, S. E. Barkou, T. Sondergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett., Vol.25, pp.96-98, 2000.
[54] Francis Nedvidek, Marcus Nebeling and Daniel Mailloux, “Deploying CWDM to Overcome Bandwidth Limitations of FTTH Access Networks,” FTTH Conference & Expo., 2006.
[55] K. M. Ho, C. T. Chan, and C. M. Soukouils, “Existence of a photonic gap in periodic dielectric structures,” Phy. Rev. Lett., Vol. 65, pp. 3152, 1990.
[56] K. M. Leung, and Y. F. Liu, “Photon band structures: The plane-wave method,” Phys. Rev. B, Vol. 41, pp. 10188, 1990.
[57] Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett., Vol. 65, pp.2650, 1990.
[58] B. C. Gupta, C. H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E., Vol. 69, pp. 06615-1, 2004.
[59] P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun., Vol. 85, pp. 306, 1995.
[60] K. S. Kunz and R. J. Luebbers, “The finite difference time domain method for electromagnetics,” Boca Raton FL: CRC Press, 1993.
[61] G. S. Smith, M. P. Kesier, J. G. Maloney, and B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett., Vol. 11, pp. 169, 1996.
[62] J. G. Maloney, M. P. Kesier, B. L. Shirely, and G. S. Smith, “A simpled description for waveguiding in photonic bandgap materials,” Microwave Opt. Technol. Lett., Vol. 14, pp. 261, 1997.
[63] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equation In Isotropic Media,” IEEE Trans. Antennas Propagat., AP-14, pp. 302-307, 1966.
[64] M. Y. Teleste, J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express, Vol. 14, pp.7931-7942, 2006.
[65] S. G. Johnson, J. D. Joannopoulos, “Designing synthetic optical media: Photonic Crystals,” Acta. Mater, Vol. 51, pp.5823-5835, 2003.
[66] T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, “Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5m short cavity lasers,” J. Vac. Sci. Technol. B, Vol. 19, pp.2775–2778, 2001.
[67] M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett., Vol. 81, pp.2680–2682, 2002.
[68] K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Topics Quantum Electron., Vol. 6, pp. 4-13, 2000.
[69] T. T. Shih, Y. D. Wu, J. J. Lee, “ Proposal for Compact Optical Triplexer Filter Using 2-D Photonic Crystals,” IEEE Photonics. Technol. Lett., Vol. 21, pp.18-20, 2009.
[70] J. H. Song, K. S. Lee, and Y. Oh, “Triple wavelength demultiplexers for low-cost optical triplexer transceivers,” J. Lightw. Technol., Vol 15, pp.350-358, 2007.
[71] X. Li, G. R. Zhou, N. N. Feng, and W. P. Huang, “A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver,” IEEE Photon. Technol. Lett., Vol. 17, pp.1214-1216, 2005.
[72] C. Xu, X. Hong, and W. P. Huang, “Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit,” Opt. Express., Vol. 14, pp. 4675-4686, 2006.
[73] T. Lang, J. J. He, and S. He, “Cross-order arrayed waveguide grating design for triplexers in fiber access network,” IEEE Photon. Technol. Lett., Vol. 18, pp.232-234, 2006.
[74] N. J. Florous, K. Saitoh, and M. Koshiba, “Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology, ” Opt. Lett., Vol. 30, pp. 2736-2738, 2005.
[75] A. Yariv, Y. Xu, R. K. Lee, and A. scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett., Vol. 24, pp.711-713, 1999.
[76] C. Chen, X. Li, H. Li, K. Xu, J. Wu, and J. Lin, “Bandpass filter based on phase-shifted photonic crystal waveguide gratings,” Opt. Express, Vol. 15, pp. 11278-11284, 2007.
[77] R. Zengerle and O. Leminger, “Phase-shifted Bragg-gratings filters with improved transmission characteristics,” J. Lightwave Technol., Vol. 13, pp. 2354-2358, 1995.
[78] S. Yu, S. Koo, and N. Park, “Coded output photonic A/D converter based on photonic crystal slow-light structures,” Opt. Express, Vol. 16, pp. 13752-13757, 2008.
[79] J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: toward the slowing and storage of light,” Opt. Photon. News, Vol. 16, pp. 36-40, 2005.
[80] M. S. Moreolo, G. Manzacca, and G. Cincotti, “Coupling Phenomena in 2D Photonic Crystal Structures,” ICTON., Vol. 2, pp. 153-156, 2007.
[81] H. A. Haus, Waves and Field in Optoelectronics, 1984.
[82] H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” J. Quantum Electron, Vol.28, pp.205-213, 1992.
[83] C. W. Kuo, C. F. Chang, M. H. Chen, and S. Y. Chen, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express, Vol.15, pp.198-206, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top