|
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physica and electronics,” Phy. Rev. Lett., Vol. 58, pp. 2059-2062, 1987. [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., Vol. 58, pp. 2486-2489, 1987. [3] Shanhui Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express., Vol. 3, pp. 4-11, 1998. [4] Bong-Shik Song, Takashi Asano, Yoshihiro Akahane, Yoshinori Tanaka, and Susumu Noda, “Multichannel Add/Drop Filter Based on In-Plane Hetero Photonic Crystals,” J. Lightwave Technol.., Vol. 23, pp. 1449-1455, 2005. [5] Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Pratrher, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt., Vol. 40, pp. 2247-2252, 2001. [6] Sangin Kim, Ikmo park, Hanjo Lim, and Chul-Sik Kee, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Opt. Express, Vol. 12, pp. 5518-5525, 2004. [7] Honglian Ren, Chun Jian, Weisheng Hu, Mingyi Gao, Jingyuan Gao and Jingyuan Wangm, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express, Vol. 14, pp. 2446-2458, 2006. [8] T. Bada, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electronics, Vol. 38, pp. 743, 2002. [9] N. Moll, G.L. Bona, “Comparison of three-dimensional photonic slab waveguides with two-dimensional photonic crystal waveguides: Efficient butt coupling into these photonic crystal waveguides,” J. Appl. Phys., Vol. 93, pp. 4986, 2003. [10] J. Moosburger, M. Kamp, A. Forchel, U. Oesterle, and R. Houdré, “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities,” J. Appl.Phys., Vol. 92, pp. 4791, 2002. [11] A. Scherer, O. Painter, J. vuckovic, M. Loncar, T. Yoshie, “Photonic Crystals for Confining, Guiding, and Emitting Light,” IEEE trans. Nanotechnology, Vol. 1, pp. 4, 2002. [12] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature, Vol. 390, pp. 143, 1997. [13] J. Sharee, M. Nab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express, Vol. 11, pp. 2927-2939, 2003. [14] H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed waveguide grating,” J. Lightwave Technol., Vol.12, pp.989-995, 1994 [15] Dragone, “Efficient N X N star couplers using Fourier optics,” J. Lightwave Technol., Vol.7, pp.479-489, 1989. [16] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication.,” Appl. Phys. Lett., Vol.32, pp.647-649, 1978. [17] Sangin Kim, Ikmo park, Hanjo Lim, and Chul-Sik Kee, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Opt. Express, Vol. 12, pp. 5518-5525, 2004. [18] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength dependent angular beam steering.” Appl. Phys. Lett., Vol.74, pp.1370-1372, 1999. [19] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers.” J. Lightwave Technol., Vol.19, pp.1970-1975, 2001. [20] A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt., Vol.40, pp.2247-2252, 2001. [21] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamaura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, Vol.58, pp.R10096-R10099, 1998. [22] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamaura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals toward microscale lightwave circuits,” J. Lightwave Technol.,” Vol.17, pp.2032-2038, 1999. [23] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamaura, T. Sato, and S. Kawakami, 1999, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett., Vol.74, pp.1212-1214, 1999. [24] B. Gralak, S. Enoch, and G. Tayeb, 2000, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A., Vol.17, pp.1012-1020, 2000. [25] T. Baba, and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE J. Quantum Electron., Vol.38, pp.909-914, 2002. [26] R. D. Meade, A. Devenyi, J. D. Joannopoulous, O. L. Alerthand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phy., Vol.75, pp.4753-4755, 1994. [27] S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, 1995, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B, Vol.12, pp.1267-1272, 1995. [28] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, , “High transmission through sharp bends in photonic crystal,” Phys. Rev. Lett., Vol.77, pp.3787-3790, 1996. [29] S. Y. Lin, E. Chow, V. Hietch, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of light in a photonic crystal,” Science, Vol.282, pp. 274-278, 1998. [30] A. Mekis, S. Fan, and J. D. Joannopoulos, 1998, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B, Vol.58, pp.4809-4817, 1998. [31] S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B, Vol.18, pp.162-165, 2001. [32] E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J.D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic crystal waveguide bends at 1.55 um wavelengths,” Opt. Lett., Vol.26, pp.286-288, 2001. [33] J. N. Winn, R. D. Meade, and J. D. Joannopoulos, “Two-dimensional photonic band-gap materials,” J. of Modern Optics, Vol.41, pp.257-273, 1994. [34] O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B, Vol.16, pp.275-285, 1999. [35] J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E, Vol.65, pp.016608-1-11, 2001. [36] S. Y. Lin, E. Chow, S. G. Johnson, and J.D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett., Vol.26, pp.1903-1905, 2001. [37] K. Srinivasan, P. E. Barclay, and O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett., Vol.83, pp.1915-1917, 2003. [38] D. Ohnishi, K. Sakai, M. Imada, and S. Noda, “Continuous wave operation of surface emitting two-dimensional photonic crystal laser,” Electron. Lette., Vol.39, pp.612-614, 2003. [39] H. Hirayama, T. Hamano, and Y. Aoyagi, “Novel surface emitting laser diode using photonic band-gap crystal cavity,” Appl. Phys. Lett., Vol.69, pp.791-793, 1996. [40] D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express, Vol.12, pp.1562-1568, 2004. [41] M. Yokoyama, S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express, Vol.13, pp.2869-2880, 2005. [42] M. Fujita, T. Ueno, K. Ishihara, T. Asano, and S. Noda, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett., Vol.85, pp.5769-5771, 2004. [43] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett., Vol.75, pp.1036-1038, 1999. [44] T. F. Krauss, R. M. De, and L. Rue, “Photonic crystals in the optical regime past, present and future,” Progress in Quantum Electron, Vol.23, pp.51-96, 1999. [45] M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Japan. J. Appl. Phys., Vol. 44, pp.3669-3677, 2005. [46] M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Express, Vol.28, pp.1525-1527, 2003. [47] F. Cuesta, A. Griol, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett., Vol.39, pp.455-456, 2003. [48] M. Shirane, A. Gomyo, K. Miura, H. Yamada, “Optical directional coupler based on autocloned photonic crystals,” Electcon. Lett., Vol.39, pp.53-54, 2003. [49] J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, “Photonic crystal waveguide directional coupler as wavelength selective optical filter,” Optics Communication, Vol.230, pp.387-392, 2003. [50] J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., Vol.19, pp.1547-1549, 1996. [51] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., Vol.22, pp.961-963, 1997. [52] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, and M. V. Andres, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett., Vol.24, pp.276-278, 1999. [53] J. Broeng, S. E. Barkou, T. Sondergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett., Vol.25, pp.96-98, 2000. [54] Francis Nedvidek, Marcus Nebeling and Daniel Mailloux, “Deploying CWDM to Overcome Bandwidth Limitations of FTTH Access Networks,” FTTH Conference & Expo., 2006. [55] K. M. Ho, C. T. Chan, and C. M. Soukouils, “Existence of a photonic gap in periodic dielectric structures,” Phy. Rev. Lett., Vol. 65, pp. 3152, 1990. [56] K. M. Leung, and Y. F. Liu, “Photon band structures: The plane-wave method,” Phys. Rev. B, Vol. 41, pp. 10188, 1990. [57] Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett., Vol. 65, pp.2650, 1990. [58] B. C. Gupta, C. H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E., Vol. 69, pp. 06615-1, 2004. [59] P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun., Vol. 85, pp. 306, 1995. [60] K. S. Kunz and R. J. Luebbers, “The finite difference time domain method for electromagnetics,” Boca Raton FL: CRC Press, 1993. [61] G. S. Smith, M. P. Kesier, J. G. Maloney, and B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett., Vol. 11, pp. 169, 1996. [62] J. G. Maloney, M. P. Kesier, B. L. Shirely, and G. S. Smith, “A simpled description for waveguiding in photonic bandgap materials,” Microwave Opt. Technol. Lett., Vol. 14, pp. 261, 1997. [63] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equation In Isotropic Media,” IEEE Trans. Antennas Propagat., AP-14, pp. 302-307, 1966. [64] M. Y. Teleste, J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express, Vol. 14, pp.7931-7942, 2006. [65] S. G. Johnson, J. D. Joannopoulos, “Designing synthetic optical media: Photonic Crystals,” Acta. Mater, Vol. 51, pp.5823-5835, 2003. [66] T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, “Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5m short cavity lasers,” J. Vac. Sci. Technol. B, Vol. 19, pp.2775–2778, 2001. [67] M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett., Vol. 81, pp.2680–2682, 2002. [68] K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Topics Quantum Electron., Vol. 6, pp. 4-13, 2000. [69] T. T. Shih, Y. D. Wu, J. J. Lee, “ Proposal for Compact Optical Triplexer Filter Using 2-D Photonic Crystals,” IEEE Photonics. Technol. Lett., Vol. 21, pp.18-20, 2009. [70] J. H. Song, K. S. Lee, and Y. Oh, “Triple wavelength demultiplexers for low-cost optical triplexer transceivers,” J. Lightw. Technol., Vol 15, pp.350-358, 2007. [71] X. Li, G. R. Zhou, N. N. Feng, and W. P. Huang, “A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver,” IEEE Photon. Technol. Lett., Vol. 17, pp.1214-1216, 2005. [72] C. Xu, X. Hong, and W. P. Huang, “Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit,” Opt. Express., Vol. 14, pp. 4675-4686, 2006. [73] T. Lang, J. J. He, and S. He, “Cross-order arrayed waveguide grating design for triplexers in fiber access network,” IEEE Photon. Technol. Lett., Vol. 18, pp.232-234, 2006. [74] N. J. Florous, K. Saitoh, and M. Koshiba, “Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology, ” Opt. Lett., Vol. 30, pp. 2736-2738, 2005. [75] A. Yariv, Y. Xu, R. K. Lee, and A. scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett., Vol. 24, pp.711-713, 1999. [76] C. Chen, X. Li, H. Li, K. Xu, J. Wu, and J. Lin, “Bandpass filter based on phase-shifted photonic crystal waveguide gratings,” Opt. Express, Vol. 15, pp. 11278-11284, 2007. [77] R. Zengerle and O. Leminger, “Phase-shifted Bragg-gratings filters with improved transmission characteristics,” J. Lightwave Technol., Vol. 13, pp. 2354-2358, 1995. [78] S. Yu, S. Koo, and N. Park, “Coded output photonic A/D converter based on photonic crystal slow-light structures,” Opt. Express, Vol. 16, pp. 13752-13757, 2008. [79] J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: toward the slowing and storage of light,” Opt. Photon. News, Vol. 16, pp. 36-40, 2005. [80] M. S. Moreolo, G. Manzacca, and G. Cincotti, “Coupling Phenomena in 2D Photonic Crystal Structures,” ICTON., Vol. 2, pp. 153-156, 2007. [81] H. A. Haus, Waves and Field in Optoelectronics, 1984. [82] H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” J. Quantum Electron, Vol.28, pp.205-213, 1992. [83] C. W. Kuo, C. F. Chang, M. H. Chen, and S. Y. Chen, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express, Vol.15, pp.198-206, 2007.
|