跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳建漳
研究生(外文):Jane-Jang Wu
論文名稱:以儲存式粒子群演算法處理N-QUEEN問題
論文名稱(外文):Solving N-Queen Problem Using Repository Particle Swarm Optimization Algorithms
指導教授:邱昭彰邱昭彰引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:48
中文關鍵詞:最佳化(Optimization)人工智慧(AI)啟發式(Heuristic)粒子演算法(PSO)儲存式粒子演算法(RPSO)基因演算法(GA)
外文關鍵詞:optimizationartificial intelligenceheuristicparticle swarm algorithmsrepository particle swarm algorithmsgenetic algor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:683
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究提出一種儲存型的粒子群演算法(Reposition PSO)簡稱(RPSO),透過RPSO的啟發式方法與儲存經驗值的記憶方式,使PSO在問題求解上更具有效率,同時我們也透過N-Queen的問題來驗證RPSO的效能,本文將每粒子個體透過維度的轉換成矩陣方式進而處理N-Queen問題,透過此方法建構模型來處理N-Queen問題,同時以陣列的方法來儲存粒子的離散狀態並提供演算法饋入使用,合理的應用於N-Queen問題上,本文將以RPSO與其他型粒子演算法及基因演算法(Genetic Algorithms, Ga)來驗證RPSO的效能優於其他型演算法,並驗證了儲存型的粒子群演算法較具有效性與一致性。
This research studies a storage grain of PSO algorithm method (Reposition PSO) to be called (RPSO), through RPSO the heuristic method and the storage empirical value memory way, makes PSO to solve in the question on has the efficiency, this article then processes each particle individual penetration dimension transformation matrix way the N-Queen Problem, through this method construction model to deal with the N-Queen Problem issue, simultaneously stores up the granule by the array method the discrete state and provides the calculating method to feed into the use, the reasonable application in the N-Queen Problem, this article by RPSO with other type of Algorithm method and the Gas Algorithm method (Genetic Algorithms, Ga) will confirm RPSO the potency to surpass other algorithm method, and confirmed the RPSO algorithm to compare has the validity and the uniformity.
書名頁 i
論文口試委員審定書 ii
授權書 iii
中文提要 iv
英文提要 v
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 x
1 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 2
1.3 研究流程 3
1.4 論文架構 4
2 文獻探討 5
2.1 PSO的演化概念流程與衍生的相關文獻 5
1 PSO之發展背景 5
2 PSO 之理論介紹 6
3 離散型DPSO 8
4 基因演算法GA 10
2.2 N-Queen問題 11
3 研究方法 15
3.1 研究架構 15
3.2 RPSO之演算虛擬碼: 21
3.3 RPSO流程圖 22
4 儲存式粒子群最佳演算法之應用與說明 23
4.1 系統架構 23
4.2 實驗描述 23
5 實驗結果與分析 26
5.1 以10-Queen問題分別以RPSO及PSO演算法分析效能 26
5.2 以20-Queen問題分別以RPSO及PSO演算法分析效能 27
5.3 以50-Queen問題分別以RPSO及PSO演算法分析效 27
5.4 以100-Queen問題分別以RPSO及PSO演算法分析效 29
5.5 以200-Queen問題分別以RPSO及PSO演算法分析 29
5.6 以N-Queen分別以 10,20,50,100,200 個Queen及三種演算法與代數分析效能彙總分析圖表: 30
5.7 以N-Queen分別以 10,20,50,100,200 個Queen及三種演算法與時間分析效能彙總分析圖表: 31
5.8 實驗總結說明 32
6 結論與後續研究建議 33
參考文獻 35
附錄 38
附錄一. 10-QUEEN的30次實驗結果 38
附錄二. 20-QUEEN的30次實驗結果 40
附錄三. 50-QUEEN的30次實驗結果: 42
附錄四. 100-QUEEN的30次實驗結果: 44
附錄五. 200-QUEEN的30次實驗結果: 46
自 傳 48
[1]陳有賢,邱昭彰,“應用多目標遺傳演算法於網際網路網告採買策略最佳化,” 全國博碩士論文資訊網國, 第13頁,2002
[2]郭信川, 張建仁, 劉清祥, “粒子群演算法於最佳化問題之研究,” 第一屆台灣作業研究學會學術研討會暨, 2004年科技與管理學術研討會, 2004
[3]黃春福, “演算法策略–回溯法,” http://alfu.csie.vnu.edu.tw/algorithm/strategy_backtracking.pdf, Data accessed: 2007/4/10.
[4]Angeline, P., “Evolutionary Optimization versus Particle Swarm Optimization: Philosophy and Performance Differences,” Proceedings of the Evolutionary programming, Vol. 1447, pp. 601-610, 1998.
[5]Boeringer, D. W. and Werner, D. H., “Particle Swarm Optimization versus Genetic Algorithms for Phased Array Synthesis,” IEEE Transactions on Antennas and Propagation , Vol. 52, pp. 771-779, 2004.
[6]Bryan, C., Lam, Leung and H-f., “Progressive Stochastic Search for Solving Constraint Satisfaction Problems,” Proceedings of 15th IEEE International Conference, Tools with Artificial Intelligence, pp. 487-491, 2003.
[7]Dozier, G., Bowen, J. and Bahler, D., “Solving Small and Large Scale Constraint Satisfaction Problems Using a Heuristic-Based Microgenetic Algorithm,” IEEE World Congress on Computational Intelligence, pp. 306-311, 1994.
[8]Du, S., Li, W. and Cao, K., “A Learning Algorithm of Artificial Neural Network Based on GA – PSO,” Intelligent Control and Automation, pp. 3633-3637, 2006.
[9]Eberhart, R.C. and Shi, Y., ”Comparison Between Genetic Algorithms and Particle Swarm Optimization,” Proceedings of the 7th International Conference on Evolutionary Programming VII, Vol. 1447, pp. 611-616, 1998.
[10]“Eight queens puzzle, ” From Wikipedia, the free encyclopedia , http://en.wikipedia.org/wiki/Eight_queens_puzzle#History ,Data accessed: 2007/4/1.
[11]“Evolver Developer''s Kit,” http://www.palisade-europe.com/devkits/edk.asp, Data accessed: 2007/4/10.
[12]Gwee, B-H. and Lim, M. H., “An Evolution Search Algorithm for Solving N-queen Problems,” International Journal of Computer Applications in Technology, Vol. 24, No.1, pp. 43-48, 2005.
[13]Homaifar, A., Turner, J. and Ali, S., “The N-Queens Problem and Genetic Algorithms,” Proceedings of the IEEE Southeast Conference, pp. 262-261, 1992.
[14]Hu, X., Eberhart, R. C. and Shi, Y. “Swarm Intelligence for Permutation Optimization: a Case Study of N-Queens Problem,” Proceedings of the 2003 IEEE 24-26 April 2003, pp. 243-246, 2003.
[15]Kennedy, J. and Eberhart, R.C., “Particle Swarm Optimization,” Proceedings of the 1995 IEEE International Conference on Neural Networks, Vol. 4, pp. 1942-1948, 1995.
[16]Kennedy, J. and Eberhart, R., “A Discret Binary version of The Particle Swarm,” Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, NJ, pp. 4104-4108, 1997.
[17]Krohling, R. A. and Coelho, L. D. S. C., “Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems,” IEEE Transactions on Digital Object Identifier, Vol. 36, pp. 1407-1416, 2006.
[18]Kwok, T. and Smith, K.A., “A Noisy Self-organizing Neural Network with Bifurcation Dynamics for Combinatorial Optimization,” IEEE Transactions on Digital Object Identifier, Vol. 6, pp. 84-98, 2006.
[19]Liu, J., Zhong, W. and Jiao, L., “A Multiagent Evolutionary Algorithm for Constraint Satisfaction Problems,” IEEE Transactions on Digital Object Identifier , Vol. 36, pp. 54–73, 2006.
[20]Lin, I-L. , “Paticle Swarm Optimztion for Solving Constraint Satisfaction Problems,” Simon Fraser University, 2002.
[21]Marko, B., Marin, G. and Leo, B., “Solving N-Queen Problem Using Global Parallel Genetic Algorithm,“ EUROCON 2003. Computer as a Tool, The IEEE Region 8, Vol. 2, pp. 104-107, 2003.
[22]Nakaguchi, T., Jin''no, K. and Tanaka, M., “Theoretical Analysis of Hysteresis Neural Network Solving N-Queens problems,” Proceedings of the IEEE International Symposium, pp. 555 - 558, 1999.
[23]Pan, Q. K.,Tasgetiren, M. F. and Liang, Y. C., “A Discrete Particle Swarm Optimization Algorithm for Single Machine Total Earliness and Tardiness Problem with a Common Due Date,” Proceedings of IEEE Congress on Evolutionary Computation, pp. 3281-3288, 2006.
[24]Sanchaik , Benedicl and Paranjar ,”A Dynamic Extension of the Asynchonous Weak Commitment,” Proceedings of IEEE Electrical and Computer Engineering, 2005. Canadian Conference on 1-4 May 2005, pp. 112-115, 2005.
[25]Shi, Y., “Particle Swarm Optimization,” Data Systems, Kokomo, IN 46902, USA, 2004.
[26]Sosic, R. and Gu, J. “Efficient Local Search with Conflict Minimization: a Case Study of the n-Queens,” Proceedings of IEEE Transations on Knowledge and Data Englineering, Vol. 6, pp. 661-668, 1994.
[27]Topon, K. P. and Hitoshi, I., ”Linear and Combinatorial Optimizations by Estimation of Distribution Algorithms,” 9th MPS Symposium on Evolutionary Computation, (Information Processing Society of Japan, IPSJ), Japan, 2002.
[28]Ting, T.O., Rao, M.V.C., Loo, C.K., “A Nnovel Approach for Unit Commitment Problem via an Effective Hybrid Particle Swarm Optimization,” IEEE Transactions on Digital Object Identifier, Vol. 21, pp. 411–418, 2006.
[29]Wang, C. N., Yang, S. W., Liu, C. M. and Chiang, T., “A Hierarchical Decimation Lattice Based on N-Queen with an Application for Motion Estimation,” Signal Processing Letters, IEEE Volume 10, Issue 8, Aug. 2003, Vol. 6, pp. 228-231, 2003.
[30]Wang, G., Zhang, M., Xu, X. and Jiang, C.,”Optimization of Controller Parameters Based on The Improved Genetic Algorithms,” Proceedings of Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on Vol. 1, pp. 21-23 June 2006, Vol. 1, pp. 3695-3698, 2006.
[31]Wu, M. I., Shu, W. and Gu, J. “Local Search for DAG Scheduling and Task Assignment,” Proceedings of the 1997 International Conference on 11-15 Aug, pp. 174-180, 1997.
[32]Ying, T., Yang, Y., Zeng and J. C., “An Enhanced Hybrid Quadratic Particle Swarm Optimization,” Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Vol. 15, pp. 980-985, 2004.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 狩野紀昭、瀨樂信彥、高橋文夫、新一,1984,有魅力的品質與應該有的品質,品質管制月刊,第21卷,第5期,33- 41。譯自日本”品質”雜誌,1984,第14卷,第2期,147。
2. 楊錦洲,1993,二維品質模式在服務品質上之應用,品質管制月刊,第29卷,第5期,第28頁。
3. 馮正民、鄭光遠,1996,探討航空公司員工滿意度與顧客忠誠度關係之研究:由服務行為之觀點探討,運輸計劃季刊,第35卷,第2期,191~232。
4. 14. 邱貞蓉(2006),「轉動地球生命力-生質柴油公車試行上路」,能源報導p.20~19,工業技術研究院能源與環境研究所。
5. 21. 林俊義 (2005),「能源作物之國外推動經驗與國內發展展望」,永續農業第23期,p.3~11,行政院農業委員會農業試驗所。
6. 22. 林俊義 (2006),「能源作物之國外推動經驗與國內發展展望(下)」,農業試驗所技術服務第65期,p.5~10,農試所所長。
7. 23. 林昀輝、李宏台、盧文章 (2006),「台灣發展生質柴油的技術創新」,碳經濟月刊第三期,p.2~9。
8. 26. 吳耿東、盧文章、李宏台 (2003),「生質能應用現況與發展」,太陽能及新能源學刊第八卷.第二期,工業技術研究院能源與資源研究所。
9. 28. 吳耿東、萬皓鵬、李宏台、徐瑞鐘 (2005),「我國生質能之應用」,經濟前瞻,工業技術研究院能源與資源研究所。
10. 35. 徐業良 (2003),「在田裡種能源-淺談乙醇汽油」,汽車購買指南雜誌,2004年三月號,史丹福專欄,元智大學最佳化設計實驗室。
11. 42. 黃書禮 (2002),「生態系統理論在區域研究之應用」,都市與計劃.第29卷.第2期,p.187-215。(TSSCI)
12. 46. 黃瀕儀、黃宗煌 (2006),「推廣能源作物生產的問題與政策調和」,能源季刊,p.1~15。
13. 47. 黃瀕儀、詹滿色、黃宗煌 (2007),「台灣稻作農家轉作能源作物意願分析」,能源報導,p.14~16。
14. 48. 黃瀕儀、詹滿色 (2006),「台灣稻作農家農地轉作能源作物的意願分析」,碳經濟月刊第三期,p.20~31。
15. 57. 鄭作林、蕭耀基 (2006),「台糖公司在生質酒精的發展策略」,能源報導,p.11~13,台糖公司。