跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 10:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳修豪
研究生(外文):HSIU-HAO WU
論文名稱:疏水性微流道內液流滑移之測定
論文名稱(外文):Measurements of Liquid Slip in Hydrophobic Microchannels
指導教授:宋齊有
指導教授(外文):Chyi-Yeou Soong
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:63
中文關鍵詞:微流道流滑移長度疏水性表面接觸角
外文關鍵詞:Hydrophobic surfaceSlip lengthContact angleMicrochannel flow
相關次數:
  • 被引用被引用:4
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是測定疏水性微流道內壓力驅動液流之滑移現象,實驗模型為以疏水性的PDMS(聚二甲基矽烷)為材料所製作的微流道,微流道的模型寬度為1mm,高度有兩種,分別為50μm、100μm。為消除電動力效應,實驗中以常溫莫耳濃度1M的氯化鈉溶液做為工作流體,以消除液體中可能帶有離子所產生之電動力效應,根據層流理論可推導出具邊界滑移之通道全展流解,建立其流量與壓力梯度及滑移長度之關係。實驗中量測出工作流體流經微流道的壓力梯度跟流量,即可結合理論公式,求出滑移長度。除此之外,本研究也作了接觸角的量測以表徵實驗模型的疏水性。本研究結果顯示較寬大的流道有較長的滑移長度,此點與一般理論認知不同,是實驗的不準確度或是電動力效應所致,有待再深入探討,接觸角量測出PDMS表面接觸高濃度氯化鈉溶液較接觸去離子水更具有親水性。
The objective of this study is to experimentally determine the slip length in the hydrophobic microchannel with pressure-driven liquid flow. Two test model of PDMS material are fabricated using MEMS technique. Both the models are of the same length 5cm and width 1mm, but of different channel height, i.e. 50μm and 100μm. NaCl solution with high molar concentration of 1M is employed as the working fluids for eliminating electrokinetic effect from the ions possibly contained in liquid. According to laminar theory, the solution of fully-developed boundary slip flow can determine the relationship of flowrate with pressure drop and slip length. In the present study, pressure drop and flowrate are measured when working fluid flows in the microchannel. Combining the measurements and the theoretical formula, the slip length can be determined. In addition, contact angles are measured to characterize the hydrophobicity of the models. Different from the existing theories, the present experimental results show that the slip length in the higher channel is larger than that in the lower channel. Measurement uncertainty or electrokinetic effect might be the reason but more profound investigation is worthwhile. The results of contact angle measurement indicate that PDMS surface contacting NaCl solutions with high molar concentration is more hydrophilic than contacting DI water.
誌謝 I
摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目標與方法 6
1.4 本論文架構 7
第二章 理論背景 9
第三章 實驗設計與模型製作 11
3.1 流道相關參數 11
3.2 製程儀器與設備 11
3.3 量測實驗儀器與設備 13
3.4 微流道母模製作 15
3.4.1 濕洗淨製程 15
3.4.2 光蝕刻微影製程 15
3.5 微流道製作 17
第四章 實驗方法及流程 32
4.1 實驗方法 32
4.2 初步校正 32
4.3 實驗流程 33
4.4 本實驗環境影響因素 35
第五章 數據擷取與不準確度分析 38
5.1 數據擷取 38
5.2 數據分析 38
5.3 不準確度分析 38
第六章 結果與討論 43
6.1 滑移長度之決定 43
6.2 接觸角之量測 44
第七章 結論與未來展望 55
7.1 結論 55
7.2 未來展望 56
參考文獻 57
附錄一、雙面光罩對準曝光儀操作程序 59
附錄二、接觸角量測 62
[1]D. Byun, J. Kim, H. S. Ko and H. C. Park, “Direct Measurement of Slip Flows in Superhydrophobic Microchannels with Transverse Grooves,” Physics of Fluids, Vol. 20, 2008, pp. 113601-1 – 113601-9.

[2]凌志勇、劉勇、庄志文、丁建寧、楊繼昌, “界面性質對流動滑移特性影響的實驗研究,” 潤滑與密封, 第12期, 2006, pp. 104 - 119

[3]C. Y. Soong, P. W. Hwang and J. C. Wang, “Analysis of Pressure-driven Electrokinetic Flows in Hydrophobic Microchannels with Slip-dependent Zeta Potential,” Microfluid Nanofluid, Vol.9, 2010, pp. 211 - 223.

[4]G. O. Berim and E. Rucjenstein, “Size Dependence of the Contact Angle of a Nanodrop in a Nanocavity: Density functional theory considerations,” Physical Review, E88, 2011, pp. 021603-1 – 021603-5

[5]P. Joseph and P. Tabeling, “Direct Measurement of the Apparent Slip Length,” Physical Review, E71, 2005, pp. 035303-1 – 035303-4

[6]C. I. Bouzigus, L. Bocquet, E. Charlaix, C. Cottin-Bizonne, B. Cross, L. Joly, A. Steinberger, C. Ybert and P. Tabeling, “Using Surface Force Apparatus, Diffusion and Velocimetry to Measure Slip Length,” Philosophical Transactions of The Royal Society A, 366, 2008, pp. 1455 – 1468

[7]L. Jian, Z. Ming, C. Lan, Y. Xia and Y. Run, “On the Measurement of Slip Length for Liquid for Flow over Super-hydrophobic Surface,” Chinese Science Bulletin, Vol. 54, pp. 4560 – 4565

[8]C. H. Choi, K. Johan A. Westin and Kenneth S. Breuer, “Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels,“Physics of fluids, Vol. 15 No. 10, 2003, pp.2897 – 2902

[9]P. Huang and K. S. Breuer, “Direct Measurement of Slip Length in Electrolyte Solutions, ” Physics of fluids, Vol. 19, 2007, pp. 028104-1 – 028104-3
[10]R. S. Voronov, D. V. Papavassiliou and L. Lee, “Review of Fluid Slip over Superhydrophobic Surfaces and its Dependence on the Contant Angle,” Industrial & Engineering Chemistry Research, Vol. 47, 2008, pp. 2455 – 2477

[11]F. Lu and D. Y. Kwok, “The Validity of Static EDL Theory as Applied to Streaming Potential of Pressure-driven Flow in Parallel-plate Microchannels, ” International Conference on MEMS, NANO and Smart Systems, 2004, pp.650 - 653.

[12]L. Ren, D. Li and W. Qu, “Electro-Viscous Effects on Liquid Flow in Microchannels, ” Journal of Colloid and Interface Science, Vol. 233, 2001, pp.12 - 22.

[13]Microchen,”SU-8 3000 Permanent Epoxy Negative Photoresist,” http://www.microchen.com.

[14]A. Amirfazli, D. Chatain, A.W. Neumann, “Drop Size Dependence of Contact Angle for Liquid Tin on Silica Surface: Line Tension and its Correlation with Solid-Liquid Interfacial Tension,” Colloids Surfaces A: Physicochemical and Engineering, Aspects 142, 1998, pp. 183 - 188.

[15]Holman, J. P., Experimental Methords for Engineers, 7th ed., McGraw Hill. 2001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top