|
Directory 1. Introduction 1 1.1 Functions 2 1.2 Censored Data 3 1.3 Linear Transformation Model 4 1.4 Literature Review 5 1.5 Outline 6 2. The Application of Kernel Function 7 2.1 Standard Normal Distribution 13 2.2 Exponential Distribution 16 2.3 Weibull Distribution 19 3. Model and Parameter Estimation 22 3.1 Unknown Baseline Hazard Function 24 3.2 Newton-Raphson Method 26 4. Simulation Study 27 5. Conclusions 39 Reference 41 Appendix 43
List of Figures Fig. 2.1 Histograms with different endpoints of bins 7 Fig. 2.2 Histogram with blocks centered over data points 8 Fig. 2.3 Estimated function with Gaussian kernel function 9 Fig. 2.4 Four kernel functions: Uniform, Gaussian, Triangle, Epanechnikov 10 Fig. 2.5 Four estimated functions with Gaussian kernel density estimation under the standard normal distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 14 Fig. 2.6 Four estimated functions with Uniform kernel density estimation under the standard normal distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 15 Fig. 2.7 Four estimated functions with Gaussian kernel density estimation under the exponential distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 17 Fig. 2.8 Four estimated functions with Uniform kernel density estimation under the exponential distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 18 Fig. 2.9 Four estimated functions with Gaussian kernel density estimation under the Weibull distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 20 Fig. 2.10 Four estimated functions with Uniform kernel density estimation under the Weibull distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 21 Fig. 4.1 Histograms of time t when the shape parameter (γ) of Weibull distribution is equal to 0.5, 1, 2 and 5. Sample size is 500. 29 List of Tables Table 4.1 Kernel simulation 1 (n=300,ρ=1,α=2,γ=5) 30 Table 4.2 Kernel simulation 2 (n=300,ρ=1,α=2,γ=2) 30 Table 4.3 Kernel simulation 3 (n=300,ρ=1,α=2,γ=1) 31 Table 4.4 Kernel simulation 4 (n=300,ρ=1,α=2,γ=0.5) 31 Table 4.5 Kernel simulation 5 (n=300,ρ=1,α=1,γ=5) 32 Table 4.6 Kernel simulation 6 (n=300,ρ=1,α=1,γ=2) 32 Table 4.7 Kernel simulation 7 (n=300,ρ=1,α=1,γ=1) 33 Table 4.8 Kernel simulation 8 (n=300,ρ=1,α=1,γ=0.5) 33 Table 4.9 Kernel simulation 9 (n=500,ρ=1,α=2,γ=5) 34 Table 4.10 Kernel simulation 10 (n=500,ρ=1,α=2,γ=2) 35 Table 4.11 Kernel simulation 11 (n=500,ρ=1,α=2,γ=1) 35 Table 4.12 Kernel simulation 12 (n=500,ρ=1,α=2,γ=0.5) 36 Table 4.13 Kernel simulation 13 (n=500,ρ=1,α=1,γ=5) 36 Table 4.14 Kernel simulation 14 (n=500,ρ=1,α=1,γ=2) 37 Table 4.15 Kernel simulation 15 (n=500,ρ=1,α=1,γ=1) 37 Table 4.16 Kernel simulation 16 (n=500,ρ=1,α=1,γ=0.5) 38 Table A.1 Kernel simulation 17 (n=300,ρ=0,α=2,γ=5) 47 Table A.2 Kernel simulation 18 (n=300,ρ=0,α=2,γ=2) 48 Table A.3 Kernel simulation 19 (n=300,ρ=0,α=2,γ=1) 48 Table A.4 Kernel simulation 20 (n=300,ρ=0,α=2,γ=0.5) 49 Table A.5 Kernel simulation 21 (n=300,ρ=0,α=1,γ=5) 49 Table A.6 Kernel simulation 22 (n=300,ρ=0,α=1,γ=2) 50 Table A.7 Kernel simulation 23 (n=300,ρ=0,α=1,γ=1) 50 Table A.8 Kernel simulation 24 (n=300,ρ=0,α=1,γ=0.5) 51 Table A.9 Kernel simulation 25 (n=500,ρ=0,α=2,γ=5) 51 Table A.10 Kernel simulation 26 (n=500,ρ=0,α=2,γ=2) 52 Table A.11 Kernel simulation 27 (n=500,ρ=0,α=2,γ=1) 52 Table A.12 Kernel simulation 28 (n=500,ρ=0,α=2,γ=0.5) 53 Table A.13 Kernel simulation 29 (n=500,ρ=0,α=1,γ=5) 53 Table A.14 Kernel simulation 30 (n=500,ρ=0,α=1,γ=2) 54 Table A.15 Kernel simulation 31 (n=500,ρ=0,α=1,γ=1) 54 Table A.16 Kernel simulation 32 (n=500,ρ=0,α=1,γ=0.5) 55 Table A.17 Kernel simulation 33 (n=300,ρ=0.5,α=2,γ=5) 56 Table A.18 Kernel simulation 34 (n=300,ρ=0.5,α=2,γ=2) 57 Table A.19 Kernel simulation 35 (n=300,ρ=0.5,α=2,γ=1) 57 Table A.20 Kernel simulation 36 (n=300,ρ=0.5,α=2,γ=0.5) 58 Table A.21 Kernel simulation 37 (n=300,ρ=0.5,α=1,γ=5) 58 Table A.22 Kernel simulation 38 (n=300,ρ=0.5,α=1,γ=2) 59 Table A.23 Kernel simulation 39 (n=300,ρ=0.5,α=1,γ=1) 59 Table A.24 Kernel simulation 40 (n=300,ρ=0.5,α=1,γ=0.5) 60 Table A.25 Kernel simulation 41 (n=500,ρ=0.5,α=2,γ=5) 60 Table A.26 Kernel simulation 42 (n=500,ρ=0.5,α=2,γ=2) 61 Table A.27 Kernel simulation 43 (n=500,ρ=0.5,α=2,γ=1) 61 Table A.28 Kernel simulation 44 (n=500,ρ=0.5,α=2,γ=0.5) 62 Table A.29 Kernel simulation 45 (n=500,ρ=0.5,α=1,γ=5) 62 Table A.30 Kernel simulation 46 (n=500,ρ=0.5,α=1,γ=2) 63 Table A.31 Kernel simulation 47 (n=500,ρ=0.5,α=1,γ=1) 63 Table A.32 Kernel simulation 48 (n=500,ρ=0.5,α=1,γ=0.5) 64
|