跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林韋君
研究生(外文):Wei-Chun Lin
論文名稱:設限資料在半參數線性轉換模型之下的核函數估計
論文名稱(外文):Semiparametric Linear Transformation Model with Kernel Density Estimation
指導教授:陳蔓樺
指導教授(外文):Man-Hua Chen
口試委員:鄧文舜張慶暉
口試委員(外文):Wen-Shuenn DengChing-Hui Chang
口試日期:2016-07-21
學位類別:碩士
校院名稱:淡江大學
系所名稱:統計學系碩士班
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:64
中文關鍵詞:線性轉換模型核密度估計設限資料
外文關鍵詞:Transformation ModelKernel Density EstimationCensored Data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
線性轉換模型為一個相當彈性的半參數迴歸模型。在存活分析中,最常被使用在分析上的比例風險模型以及比例勝算模型皆為線性轉換模型的兩個特例。因此,本篇研究將探討在線性轉換模型之下,利用核密度估計方法對未知累加基底風險函數進行估計的表現。本篇選用Nadaraya-Watson核估計量對半參數迴歸模型中非參數的部分進行估計。參數部分利用Newton-Raphson方法進行估計。
在本篇中,將核密度估計方法應用在不同分配之下的估計。並且比較不同帶寬、核函數的選擇對估計結果的影響。而在模擬研究中,假設未知累加基底風險函數服從韋伯分配,利用核密度估計方法估計出來的結果顯示,只要樣本數夠大,估計的表現較好。此外,核密度估計結果的好壞,與帶寬的選擇有密切的關係。


In survival analysis, the most commonly used models, the proportional hazard model and the proportional odds model, are special cases of linear transformation model. Because of its flexibility, our aim in this thesis is to explore the performance of kernel density estimation on unknown baseline cumulative hazard function under linear transformation model. In this thesis, we chose Nadaraya-Watson kernel estimator to estimate the nonparametric part of linear transformation model. Then we used Newton-Raphson method in the estimation of parametric part, and obtained the estimate of parameter which we are interested in.
We presented the application of kernel density estimation on different functions with different kernel functions and bandwidths. In simulation studies, we assume the baseline cumulative hazard function followed a Weibull distribution, and found that the result of kernel density estimation under different censored rate performed well when the sample size is large. We also found that the choice of bandwidth plays an important role in kernel estimation.


Directory
1. Introduction 1
1.1 Functions 2
1.2 Censored Data 3
1.3 Linear Transformation Model 4
1.4 Literature Review 5
1.5 Outline 6
2. The Application of Kernel Function 7
2.1 Standard Normal Distribution 13
2.2 Exponential Distribution 16
2.3 Weibull Distribution 19
3. Model and Parameter Estimation 22
3.1 Unknown Baseline Hazard Function 24
3.2 Newton-Raphson Method 26
4. Simulation Study 27
5. Conclusions 39
Reference 41
Appendix 43


List of Figures
Fig. 2.1 Histograms with different endpoints of bins 7
Fig. 2.2 Histogram with blocks centered over data points 8
Fig. 2.3 Estimated function with Gaussian kernel function 9
Fig. 2.4 Four kernel functions: Uniform, Gaussian, Triangle, Epanechnikov 10
Fig. 2.5 Four estimated functions with Gaussian kernel density estimation under the standard normal distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 14
Fig. 2.6 Four estimated functions with Uniform kernel density estimation under the standard normal distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 15
Fig. 2.7 Four estimated functions with Gaussian kernel density estimation under the exponential distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 17
Fig. 2.8 Four estimated functions with Uniform kernel density estimation under the exponential distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 18
Fig. 2.9 Four estimated functions with Gaussian kernel density estimation under the Weibull distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 20
Fig. 2.10 Four estimated functions with Uniform kernel density estimation under the Weibull distribution. The blue line (dotted line) represents the bandwidth of 0.5 and the red line (dash line) represents the bandwidth of 0.05. 21
Fig. 4.1 Histograms of time t when the shape parameter (γ) of Weibull distribution is equal to 0.5, 1, 2 and 5. Sample size is 500. 29
List of Tables
Table 4.1 Kernel simulation 1 (n=300,ρ=1,α=2,γ=5) 30
Table 4.2 Kernel simulation 2 (n=300,ρ=1,α=2,γ=2) 30
Table 4.3 Kernel simulation 3 (n=300,ρ=1,α=2,γ=1) 31
Table 4.4 Kernel simulation 4 (n=300,ρ=1,α=2,γ=0.5) 31
Table 4.5 Kernel simulation 5 (n=300,ρ=1,α=1,γ=5) 32
Table 4.6 Kernel simulation 6 (n=300,ρ=1,α=1,γ=2) 32
Table 4.7 Kernel simulation 7 (n=300,ρ=1,α=1,γ=1) 33
Table 4.8 Kernel simulation 8 (n=300,ρ=1,α=1,γ=0.5) 33
Table 4.9 Kernel simulation 9 (n=500,ρ=1,α=2,γ=5) 34
Table 4.10 Kernel simulation 10 (n=500,ρ=1,α=2,γ=2) 35
Table 4.11 Kernel simulation 11 (n=500,ρ=1,α=2,γ=1) 35
Table 4.12 Kernel simulation 12 (n=500,ρ=1,α=2,γ=0.5) 36
Table 4.13 Kernel simulation 13 (n=500,ρ=1,α=1,γ=5) 36
Table 4.14 Kernel simulation 14 (n=500,ρ=1,α=1,γ=2) 37
Table 4.15 Kernel simulation 15 (n=500,ρ=1,α=1,γ=1) 37
Table 4.16 Kernel simulation 16 (n=500,ρ=1,α=1,γ=0.5) 38
Table A.1 Kernel simulation 17 (n=300,ρ=0,α=2,γ=5) 47
Table A.2 Kernel simulation 18 (n=300,ρ=0,α=2,γ=2) 48
Table A.3 Kernel simulation 19 (n=300,ρ=0,α=2,γ=1) 48
Table A.4 Kernel simulation 20 (n=300,ρ=0,α=2,γ=0.5) 49
Table A.5 Kernel simulation 21 (n=300,ρ=0,α=1,γ=5) 49
Table A.6 Kernel simulation 22 (n=300,ρ=0,α=1,γ=2) 50
Table A.7 Kernel simulation 23 (n=300,ρ=0,α=1,γ=1) 50
Table A.8 Kernel simulation 24 (n=300,ρ=0,α=1,γ=0.5) 51
Table A.9 Kernel simulation 25 (n=500,ρ=0,α=2,γ=5) 51
Table A.10 Kernel simulation 26 (n=500,ρ=0,α=2,γ=2) 52
Table A.11 Kernel simulation 27 (n=500,ρ=0,α=2,γ=1) 52
Table A.12 Kernel simulation 28 (n=500,ρ=0,α=2,γ=0.5) 53
Table A.13 Kernel simulation 29 (n=500,ρ=0,α=1,γ=5) 53
Table A.14 Kernel simulation 30 (n=500,ρ=0,α=1,γ=2) 54
Table A.15 Kernel simulation 31 (n=500,ρ=0,α=1,γ=1) 54
Table A.16 Kernel simulation 32 (n=500,ρ=0,α=1,γ=0.5) 55
Table A.17 Kernel simulation 33 (n=300,ρ=0.5,α=2,γ=5) 56
Table A.18 Kernel simulation 34 (n=300,ρ=0.5,α=2,γ=2) 57
Table A.19 Kernel simulation 35 (n=300,ρ=0.5,α=2,γ=1) 57
Table A.20 Kernel simulation 36 (n=300,ρ=0.5,α=2,γ=0.5) 58
Table A.21 Kernel simulation 37 (n=300,ρ=0.5,α=1,γ=5) 58
Table A.22 Kernel simulation 38 (n=300,ρ=0.5,α=1,γ=2) 59
Table A.23 Kernel simulation 39 (n=300,ρ=0.5,α=1,γ=1) 59
Table A.24 Kernel simulation 40 (n=300,ρ=0.5,α=1,γ=0.5) 60
Table A.25 Kernel simulation 41 (n=500,ρ=0.5,α=2,γ=5) 60
Table A.26 Kernel simulation 42 (n=500,ρ=0.5,α=2,γ=2) 61
Table A.27 Kernel simulation 43 (n=500,ρ=0.5,α=2,γ=1) 61
Table A.28 Kernel simulation 44 (n=500,ρ=0.5,α=2,γ=0.5) 62
Table A.29 Kernel simulation 45 (n=500,ρ=0.5,α=1,γ=5) 62
Table A.30 Kernel simulation 46 (n=500,ρ=0.5,α=1,γ=2) 63
Table A.31 Kernel simulation 47 (n=500,ρ=0.5,α=1,γ=1) 63
Table A.32 Kernel simulation 48 (n=500,ρ=0.5,α=1,γ=0.5) 64



Reference
Altman, N., & Leger, C. (1995). Bandwidth selection for kernel distribution function estimation. Journal of Statistical Planning and Inference, 46, 195-214.
Chen, K., Jin, Z., & Ying, Z.Semiparametric analysis of transformation models with censored data. Biometrika, 89, 659-668.
Deng, W., & Lin, Y. (2013). Parametric heterogeneity in the foreign direct investment-income inequality relationship: A semiparametric regression analysis. Empirical Economics, 45, 845-872.
Diehl, S., & Stute, W. (1988). Kernel density and hazard function estimation in the presence of censoring. Journal of Multivariate Analysis, 25, 299-310.
Klein, J. P., & Moeschberger, M. L. (2005). Survival analysis: Techniques for censored and truncated data, second edition. New York: Springer.
Polanskya, A. M., & Bakerb, E. R. (2000). Multistage plug-in bandwidth selection for kernel distribution function estimates. Journal of Statistical Computation and Simulation, 65, 63-80.
Quintela-del-Rio, A., & Estevez-Perez, G. (2012). Nonparametric kernel distribution function estimation with kerdiest: An R package for bandwidth choice and applications. Journal of Statistical Software, 50, 1-20.
Sarda, P. (1993). Smoothing parameter selection for smooth distribution function. Journal of Statistical Planning and Inference, 35, 65-75.
Wang, Q., Tong, X., & Sun, L. (2012). Exploring the varying covariate effects in proportional odds models with censored data. Journal of Multivariate Analysis, 109, 168-189.
Werwatz, A., Muller, M., Sperlich, S., & Hardle, W. (2005). Nonparametric and semiparametric models. Berlin Heidelberg: Springer.
Zeng, D., & Lin, D. (2007). Maximum likelihood estimation in semiparametric regression models with censored data. Journal of the Royal Statistical Society: Series B, 69, 507-564.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top