跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁志齊
研究生(外文):Chih-Chi Weng
論文名稱:高速偽隨機二進位序列產生器
論文名稱(外文):High-Speed Pseudo Random Binary Sequence Generator
指導教授:李致毅李致毅引用關係
指導教授(外文):Jri Lee
口試委員:陳怡然劉宗德
口試委員(外文):Yi-Jan ChenTsung-Te Liu
口試日期:2016-01-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:58
中文關鍵詞:偽隨機二進位序列多工器前饋等化器相位調節器
外文關鍵詞:pseudo random binary sequence (PRBS)multiplexer (MUX)feed forward equalizer (FFE)phase adjuster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:589
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
通訊系統在這幾年來不斷地在進化,愈來愈快速的資料在進行傳輸與接收,而其相對應的驗證系統也扮演著舉足輕重的地位。
  本論文提出一個利用40奈米互補式金屬氧化半導體製程製作之高速偽隨機二進位序列產生器(PRBS Generator),其功能為發送出4種不同樣式的資料序列:2^7 – 1、2^15 – 1、2^23 – 1、2^31 – 1,而資料的速率則是由外部灌入的時脈來決定,可以達到40 Gb/s。
  序列產生器的電路架構與有線背板通訊系統的發送器相似,由多工器、正反器、除頻器、前饋等化器所組成,而由於傳統的頻率合成器其操作頻率範圍有限,所以這邊的序列產生器採用了外部灌入的時脈,由半速率的時脈來觸發全速率的資料序列作為輸出,再利用前饋等化器作為輸出級,來補償資料在通道的傳送所造成的損失。在量測上,由於儀器所能提供的時脈最高只到20 Gb/s,所以最高量到40 Gb/s的資料序列輸出,雙端差動的擺福達到800 mV,功率消耗為600 mW, 我們可以利用外部的可程式化開發版來選擇序列的樣式,此外,輸出的4種序列在位元錯誤偵測器能操作的頻率範圍下(5 Gb/s ~ 32 Gb/s)進行比對驗證,皆為真。


口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the Thesis 3
Chapter 2 Introduction of Pseudo Random Binary Sequence 4
2.1 The Principle of Pseudo Random Binary Sequence 4
2.2 The Method of Realizing Pseudo Random Binary Sequence 5
Chapter 3 A High-Speed Pseudo Random Binary Sequence Generator 9
3.1 Architecture 9
3.2 The Digital Part 10
3.2.1 Structure 10
3.2.2 64:16 MUX 11
3.2.3 16:4 MUX 14
3.2.4 4:2 MUX 19
3.2.5 Timing Issue 20
3.3 The Final 2:1 MUX with Half-Rate Feedforward Equalizer 22
3.3.1 Feedforward Equalizer 22
3.3.2 Structure 24
3.3.3 Latch and Selector 26
3.3.4 Output Driver and Pre-Driver 29
3.3.5 Clock Input Driver 32
3.4 Phase Alignment Circuit 32
3.4.1 Timing Issue in the Final 2:1 MUX 32
3.4.2 Structure 33
3.4.3 Bang-Bang Phase Detector 34
3.4.4 Phase Interpolator & Up/Down Counter 35
3.4.5 Loop Behavior 36
3.4.6 Other Issue 38
3.5 Off-Chip Levels 40
3.5.1 Introduction 40
3.5.2 Bond Wire 42
Chapter 4 Measurement Results 45
4.1 Setup 45
4.2 System Integration 47
4.3 Module Measurement Results 49
4.4 Future Works 52
Chapter 5 Conclusions 55
Bibliography 56


Bibliography
[1]IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force [Online]. Available: http://www.ieee802.org/3/ba/
[2]Universal Serial Bus [Online]. Available: http://www.usb.org/
[3]Serial ATA [Online]. Available: http://www.sata-io.org/
[4]PCI-SIG [Online]. Available: http://www.pcisig.com/
[5]Jri Lee et al., “Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies,” IEEE Journal of Solid-State Circuits, vol. 50, pp. 2061-2073, Sep. 2015.
[6]Timothy O. Dickson et al., “An 80-Gb/s 2311 Pseudorandom Binary Sequence Generator in SiGe BiCMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2735-2745, Dec. 2005.
[7]G. Chen et al., “Fully-integrated 40-Gb/s Pulse Pattern Generator and Bit-Error- Rate Tester Chipsets in 65-nm CMOS technology,” Digest of Asian Solid-State Circuits Conference, pp. 109-112, Nov. 2014.
[8]H. Wang and Jri Lee, “A 21-Gb/s 87-mW Transceiver with FFE/DFE/Analog Equalizer in 65-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 909-920, Apr. 2010.
[9]P. Heydari and R. Mohanavelu, “Design of ultrahigh-speed low-voltage CMOS CML buffers and latches,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 10, pp. 1081–1093, Oct. 2004.
[10]Jri Lee, “High-Speed Circuit Designs for Transmitters in Broadband Data Links,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 1004-1015, May 2006.
[11]D. Cui et al., “A dual 23Gb/s CMOS transmitter/receiver chipset for 40Gb/s RZ-DQPSK and CS-RZ-DQPSK optical transmission,” ISSCC Dig. Tech. Papers, pp. 330-332, Feb. 2012.
[12]S. Galal and B. Razavi, “40 Gb/s amplifier and ESD protection circuit in 0.18-um CMOS technology,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2004, pp. 480–481.
[13]P. Chiang et al., “60Gb/s NRZ and PAM4 Transmitters for 400GbE in 65nm CMOS,” Digest of International Solid-State Circuits Conference, pp. 42-43, Feb. 2014.
[14]S. Kaeriyama et al., “40 Gb/s multi-data-rate CMOS transmitter and receiver chipset with SFI-5 interface for optical transmission systems,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3568–3579, Dec. 2009.
[15]K. Kanda et al., “A Single-40 Gb/s dual-20 Gb/s serializer IC with SFI-5.2 interface in 65 nm CMOS,” IEEE J. of Solid-State Circuits, vol. 44, no. 12, pp. 3580–3588, Dec. 2009.
[16]J. D. H. Alexander, “Clock recovery from random binary data, ” Electron. Lett., vol. 11, pp. 541-542, Oct. 1975.
[17]P. Hanumolu et al., “A sub-picosecond resolution 0.5–1.5 GHz digital-to-phase converter,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 414–424, Feb. 2008.
[18]Rogers RO4000. [Online]. Available:
https://www.rogerscorp.com/documents/726/acm/RO4000-Laminates---Data-sheet.apsx
[19]D. G. Kam and J. Kim, “40-Gb/s package design using wire-bonded plastic ball grid array,” IEEE Trans. Adv. Packag., vol. 31, no. 2, pp. 258–266, May 2008.
[20]Southwest Microwave Inc. [Online].
Available: http://www.southwestmicrowave.com/
[21]B. Raghavan et al., “A Sub-2W 39.8-to-44.6Gb/s Transmitter and Receiver Chipset with SFI-5.2 Interface in 40nm CMOS”, ISSCC Dig. Tech. Papers, pp. 32- 33, Feb. 2013
[22]C. Menolfi et al., “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2005, pp. 72–73.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top