跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃于恩
研究生(外文):Yu-en Huang
論文名稱:粒子群演算法於多目標雙邊生產線平衡之應用
論文名稱(外文):Apply Particle Swarm Optimization Algorithm to Multi Objects Two Sides Assembly Line Balancing Problems
指導教授:黃東城黃東城引用關係
指導教授(外文):Tung-chen Huang
學位類別:碩士
校院名稱:康寧大學
系所名稱:生產事業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:優先順序編碼粒子群演算法雙邊生產線
外文關鍵詞:Priority based encodingtwo-sides assembly line balancingParticle swarm algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
由於產品的組成元件日趨複雜,企業為能提供及時服務及縮短交期,在生產規劃中必須能精確的掌握作業時間,並於期限內完成交貨。本研究主要針對雙邊生產線之整數非線性規劃問題進行研究,並應用粒子群演算法之特性,結合個體與群體搜尋經驗,自動尋找各種符合最佳解之生產組合,以幫助生產決策。雙邊生產線平衡為一極難解之整數非線性規劃問題,限制式之設計為相當困難的挑戰,學術界雖已針對各種狀況提出限制式設計之建議,以求得最佳解,但實際生產狀況多變,不同產業間之特性亦不相同,使得應用十分困難。本論文利用粒子群演算法不同參數設定的改變,在雙邊生產線的狀況下,朝最短工時及最大關聯性方向邁進,希望搜尋到全域的最佳解。經由實驗結果顯示:粒子群演算法在不同參數的設定,所搜尋到的雙邊生產線平衡之最佳解,可提供決策者在工作安排上做選擇。但不同的參數組合,並不一定能獲得到全域最佳解,有時可能會陷入局部最佳解。
Since products is becoming more complicated, enterprises, in order to offer the service in time and shorten the delivery, must be able to control the process time, and finish delivering during the time limit. In this study, we applied Particle swarm algorithm (PSO) to two sides assembly line balancing problem which actually is an integer non-linear programming problem. In order to combine Particle swam algorithm with double side production line task assigned algorithm, we introduced directed acyclic graph to represent the relationship between tasks, and the priority based encoding to transfer continuous number to integer. Experiments shown that parameters of PSO have no significant impact on the result, and trap in the local optimal was happen. At the end, a solution set was obtained which all have the same effect to help manager doing more proper decision.
中文摘要 …………………………………………………………………………… i
英文摘要 …………………………………………………………………………… ii
目錄 ………………………………………………………………………………… iii
表目錄 ……………………………………………………………………………… iv
圖目錄 ……………………………………………………………………………… v
第壹章 緒論………………………………………………………………………… 1
第一節 研究背景與動機…………………………………………………………… 1
第二節 研究目的…………………………………………………………………… 4
第三節 論文架構與流程…………………………………………………………… 4
第貳章 文獻探討…………………………………………………………………… 6
第一節 生產線平衡………………………………………………………………… 6
第二節 粒子群最佳化演算法……………………………………………………… 9
第三節 多目標混合整數非線性規劃……………………………………………… 12
第參章 研究設計…………………………………………………………………… 16
第一節 雙邊生產線平衡問題……………………………………………………… 16
第肆章 系統實作與結果分析……………………………………………………… 30
第一節 實驗設計…………………………………………………………………… 30
第二節 實驗結果與分析…………………………………………………………… 55
第伍章 結論與建議………………………………………………………………… 58
第一節 結論………………………………………………………………………… 58
第二節 建議與未來展望…………………………………………………………… 58
參考文獻 …………………………………………………………………………… 60
附錄一 ……………………………………………………………………………… 63
附錄二 ……………………………………………………………………………… 69
附錄三 ……………………………………………………………………………… 74
附錄四 ……………………………………………………………………………… 76
吳爾飛、金燁、汪崢(2005),「雙邊生產線第二類問題研究」,計算機集成製造系統,第十一卷第十一期:1604-1608頁。
傅和彥(2005),生產與作業管理:建立產品於服務標竿,第四版,台北:前程文化。
劉慧芬(2002),雙機分工模式下多樣PCB類型製造時間最佳化問題之研究,元智大學工業工程與管理學系碩士論文。
Agrawal, P. (1985), “The related activity concept in assembly line balancing,” International Journal of Production Research, 23: 403-421.
Bartholdi, J. J. (1993), “Balancing Two-sided Assembly Lines: a Case Study”, International Journal of Production Research, Vol.31, No.10, pp.2447-2461.
Bryton, B. (1954), Balancing of a Continuous Production Line , Management Science thesis, North-Western University.
Eberhart, R. C., & Kennedy, J. (1995), “A New Optimizer Using Particle Swarm Theory”, Sixth Int. Symposium on Micromachine and Human Science, pp. 39-43.
Gen, M., Cheng R. & Wang, D. (1997) “Genetic Algorithm for Solving Shortest Path Problems”, International Conference on Evolutionary Computing, pp.401-406.
Goicolchon, A., Hansen, D. R. & Duckstein, L. (1982), Multi-objective Decision Analysis with Engineering and Business Application John Wiley & Sons , New York, pp. 9-23.
Kang Zhuo., Li Yan. & Liu Pu . (2002), “An all-purpose evolutionary algorithm for solving nonlinear programming problem”, Journal of Computer Research and Development, 39(11), 1471-1477.
Kennedy, J., & Eberhart, R. C. (1995), “Particle swarm Optimization”, International Conference on Neural Networks, vol. 4, pp. 1942-1948.
Kim, Y. K., Kim, Y. J. & Kim, Y. (1996), ”Genetic algorithms for assembly line balancing with various objectives”, Computers International Engineering, Vol.30. No.3: pp.397-409.
Kim, Y. K., Kim, Y. J. & Kim, Y. (2000), ”Two-sided Assembly Lines Balancing Using an ant-colony-based Heuristic [J]”, Production Planning & Control, pp.44-53.
Kim, Y. K., Song, W. S. & Kim, J. H. (2009), “A mathematical model and a genetic algorithm for two-sided assembly line balancing”, Computer & Operations Research, (36:3) pp.853-865.
Lee, H. W. J., Teo, K. L. & Cai, X. O. (1998), “An Optimal Control Approach to Nonlinear Mixed Integer Programming Problems”, Computer & Mathematics with Applications, 36, 87-105.
Lee, L. H. (1992), “An Approximate Method for Local Optima for Nonlinear Mixed Integer Programming Problems”, Computers and Operations Research, 19,435-444.
Lee, T. O., Kim, Y. & Kim, Y. K. (2001), “Two-sided assembly line balancing to maximize work relatedness and slackness”, Computer and Industrial Engineering”, Computer & Industrial Engineering, 40, 273-292.
Leung, Stephen C. H., & Ng, Wan-Lung. (2007), “A stochastic programming model for production planning of perishable products with postponement”, Production Planning & Control, 18(3), 190-202.
Magnanti, T. L., & Sastry, T. (2002), “Factors And Reformulations for Solving Production Planning with Changeover Costs”, Operations Research, 50(4), 708-730.
Ozcan, U., & Toklu, B. (2009), ”Multiple-criteria decision-making in two-side assembly line balancing : a goal programming and a fuzzy goal programming models”, Computers & Operations Research, (36:6) pp.1955-1965.
Rachamadugu, R., & Talbot, B. (1991), “Improving the equality of workload assignments in assembly lines”, International Journal Production Research , 29: pp.619-633.
Shi, Y., & Eberhart, R. C. (1988), A modified particle swarm optimizer, Intel Conf. on Evolutionary Computation, Alaska, USA, pp.69-73.
Simaria A. S., & Vilarinho P. M. (2004), “A genetic Algorithm Based Approach to the Mixed-model Assembly Line Balancing Problem of Type ,” Computers & Industrial Engineering, pp391-407.
Wolsey, L. A., & Nemhauser, G. L. (1998), Integer and Combinatorial Optimization, Wiley, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top