跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張正明
研究生(外文):Cheng-Ming Chang
論文名稱:以生物模版法製備高效能可撓性聚苯胺複合材料在超級電容器元件上應用
論文名稱(外文):Biotemplate Hierarchical Polyaniline Composite Films for High Performance Flexible Supercapacitor Devices
指導教授:葉瑞銘葉瑞銘引用關係
指導教授(外文):Jui-Ming Yeh
學位類別:博士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:124
中文關鍵詞:生物模版超級電容器聚苯胺導電高分子
外文關鍵詞:biotemplatesupercapacitorpolyaniline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以植物模版製作一系列的聚苯胺導電高分子複合材料薄膜電極,進行仿生結構的鑑定、薄膜電極電化學性質的特性分析以及製作超級電容器儲能元件的可行性評估。
1- 模版評估: 汲取自然生物的表面多層次性結構特性,以模版轉印技術首次複製出仿生微結構的聚苯胺導電高分子材料,本實驗以植物葉子與花瓣做為模版,透過簡單的複製方法,使得電極表面創造出豐富多層次結構與具規則性排列形態,此結構可增進電極與電解液之間氧化還原交換速率與離子擴散能力。
2- 聚苯胺與奈米碳管/石墨烯複合材料電極: 聚苯胺導電高分子可透過溶劑混合法或共聚合法與導電碳材形成複合材料,這類複合材料加上仿生結構形成3D結構電極,顯示出優越的電化學特性,在三極式系統的充放電電流1 A/g下,重量比電容的電容特性從平面結構280 F/g上升至仿生結構420 F/g,導入奈米碳管可進一步推升電容值至530 F/g,與還原石墨烯共聚合則可增加至626 F/g。此外,聚苯胺導電高分子複合材料具有良好機械性質如高可撓性,Z型摺疊不斷裂與維持高充放電循環壽命,在掃描1000次下仍保有87%初始電性。
3- 聚苯胺複合材料元件: 以聚苯胺與石墨烯複合材料電極製作成儲能元件充分展現優良的彎曲特性,超級電容器元件即使摺疊180度下,前後彎摺之循環伏安特性曲線的重疊性與再現性皆穩定,無任何負反應發生。充放次數循環1000次下的循環壽命維持率為85%。另外,仿生模版製作的元件能量密度為0.16 Wh/kg與功率密度為54.5 W/kg (元件整體重量),與文獻比較具有優越的電化學能量儲存特性。將元件進行串聯並充電至3V,串聯元件以平面形式或Z形摺疊方式(串聯長度減少十二倍)依然能點亮LED燈,充分證明以生物模版製作出仿生結構聚苯胺導電高分子複合材料電極與元件具有優越電化學特性,並且適合於設計在可撓性電子產品的儲能系統應用。

Highly flexible and foldable supercapacitor devices assembled using biotemplated polyaniline composite electrodes are described for the first time in this paper. This electrode architecture provides a facile fabrication route for creating abundant multiscale structures by using a plant species design based on nature resources and facilitates designing a hierarchical ordering morphology that improves the redox exchange and ionic diffusion resistance between the electrodes and electrolyte. The polyaniline composite was prepared using a replica technique and synthetized through in-situ oxidative polymerization by using aniline with conductive carbon materials. The biotemplated electrodes show a high electrochemical specific capacitance of 626 F g−1 in a three-electrode system, an excellent mechanical strength for enduring Z-type folding, and high cycling stability with capacity retention of 87% (545 F g−1). Furthermore, in cyclic voltammetry analysis, the prototype devices exhibit extraordinary elasticity without side reactions in various bending angles. Regarding electrochemical performance, the device responds with a high energy density of 5.06 Wh kg−1 and a high power density of 1685 W kg−1 when based on composite thin film electrodes and maintains 85% cycling retention as well as electrode performance after 1000 cycles. This study clearly reveals that fabricating hierarchical polyaniline composite electrodes through biotemplating yields high electrochemical performance and flexibility, making the electrodes useful for application in energy storage devices for portable electronic products.

摘要……………………………………………………………………Ⅰ
Abstract……………………………………………………………Ⅲ
誌謝…………………………………………………………………Ⅴ
目錄………………………………………………………………Ⅵ
圖索引………………………………………………………………Ⅹ
表索引………………………………………………………………ⅩⅤ

第一章 緒論…………………………………………………………1
1.1 前言…………………...…………………………………………1
1.2 電化學介紹與應用………………..……………..…………………3
1.2.1 電化學電容器介紹…………………..…..……………..………3
1.3 材料介紹………………………………………….………………12
1.3.1導電高分子………………………………….………………12
1.3.2導電碳材料…………….……………………….………………17
1.4 結構電極……………………………..……………………………19
1.4.1 文獻回顧………………………………………………………19
1.4.2仿生電極(Bio-inspired electrode).……………………………27

第二章 實驗方法……………………………………………………32
2.1 實驗藥品………………………………………….………………32
2.2 材料合成與電極製作…………………………………………34
2.2.1 聚苯胺之合成(氧化聚合反應)………………………………34
2.2.2 仿生模板製備(PDMS模版)………………………………35
2.2.3 具仿生微結構聚苯胺電極製備流程…………………………35
2.2.4 奈米碳管/NMP溶液製備……………………………………36
2.2.5 仿生微結構聚苯胺/奈米碳管複合薄膜製備流程…………36
2.2.6 仿生微結構聚苯胺/石墨烯複合薄膜製備流程…………….36
2.3 材料鑑定及分析儀器……………..………………………………37
2.3.1 傅利葉轉換紅外線光譜儀【FT-IR】&;減弱全反射傅立葉轉
換紅外線光譜分析【ATR-FT-IR】……………………...…….37
2.3.2 掃描式電子顯微鏡【Scanning Electron Microscope, SEM】……38
2.3.3 原子力顯微鏡【Atomic Force Microscopy, AFM】…………..…38
2.3.4 恆電位儀【Potentiostat / Galvanostat】…………..…………..…38
2.3.5 交流阻抗模組【A.C. impedance spectroscopy】………………40
2.3.6 二極式元件製作與串聯………………………...…………....…42
第三章 實驗結果與討論…………………………………………44
3.1葉子結構聚苯胺導電高分子與電化學性質探討…………44
3.1.1 純聚苯胺導電材料結構形態鑑定……………………………44
3.1.2 純聚苯胺導電高分子(polyaniline)材料合成鑑定………….47
3.1.3 純導電高分子(polyaniline)薄膜電化學電容測試….……….48
3.1.4 葉子模版製作3D多層結構純聚苯胺導電高分子小結.…….54
3.2 聚苯胺與奈米碳管複合材料電極的電容特性………………55
3.2.1 葉子模版聚苯胺/奈米碳管複合材料形態鑑定……………55
3.2.2 導電高分子/奈米碳管複合材料性質鑑定……………..……57
3.2.3葉子模版導電高分子/奈米碳管複合材料電化學測試……58
3.2.4 葉子結構聚苯胺/奈米碳管複合材料電極小結……………..…65
3.3花瓣模版聚苯胺與還原石墨烯複合材料的電性探討………….66
3.3.1 花瓣模版製作聚苯胺/還原石墨烯複合材料形態鑑定…….66
3.3.2聚苯胺/還原石墨烯複合材料結構鑑定…………………...….72
3.3.3 聚苯胺/還原石墨烯複合材料電化學測試………..……...….76
3.3.4聚苯胺/還原石墨烯複合薄膜電極小結………..……...….84
3.4 仿生結構元件製作與可撓特性………………………………….86
3.4.1 仿生結構聚苯胺/石墨烯複合薄膜元件製作與特性測量….86
3.4.2 仿生結構聚苯胺/石墨烯複合薄膜元件可撓性與循環測試.87
3.4.3 仿生結構聚苯胺複合材料薄膜製作超電容元件小結……...90
3.5超電容元件串聯在LED燈實際測試…………………………92
3.5.1 製作串聯式仿生結構聚苯胺複合材料電極元件……...……92
第四章 結論與未來展望…………………………………………94
參考文獻……………………………………………………………98
附錄…………………………………………………………………111



1. M. Winter, R. J. Brodd, Chem. Rev., 2004, 104, 4245.
2. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater., 2005, 4, 366.
3. A. G. Pandolfo, A. F. Hollenkamp, J. Power Sources, 2006, 157, 11.
4. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, 1999.
5. P. Simon, Y. Gogotsi, Nat. Mater., 2008, 7, 845.
6. J. R. Miller, P. Simon, Science, 2008, 321, 651.
7. D. S. Su, R. Schlögl, ChemSusChem, 2010, 3, 136.
8. V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, P. M. Ajayan, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 13574.
9. J. A. Rogers, Y. G. Huang, Proc. Natl. Acad. Sci. U. S. A., 2009, 106,
10875.
10. H. Nishide, K. Oyaizu, Science, 2008, 319, 737.
11. L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, Y. Cui, Proc. Nat. Acad. Sci. U.S.A., 2009, 106, 21490.
12. X. Wang, X. Lu, D. Chen, Y. Tong, G. Shen, Adv. Mater., 2014, 26,
4763.
13. X. Lu, M. Yu, G. Wang, Y. Tong and Y. Li, Energy Environ. Sci.,
2014, 7, 2160.
14. K. Naoi, P. Simon, Interface, 2008, 17, 34.
15. D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, A. M. Lubers, Chem. Soc. Rev., 2009, 38, 226.
16. J. Zhang, X. S. Zhao, ChemSusChem., 2012, 5, 818.
17. Y. Wang, Y. Xia, Adv. Mater., 2013, 25, 5336.
18. S. Chabi, C. Peng, D. Hu, Y. Zhu, Adv. Mater., 2014, 26, 2440.
19. D. Li, J. X. Huang, R. B. Kaner, Acc. Chem. Res., 2009, 42, 135.
20. S. Bhadra, D. Khastgir, N. K. Singha, J. H. Lee, Prog. Polym. Sci.,
2009, 34, 783.
21. P. K. Rajendra, N. Munichandraiah, J. Electrochem. Soc., 2002, 149,
A1393.
22. L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater.,
2011, 23, 3751.
23. G. Lota, K. Fic, E. Frackowiak, Energy Environ. Sci., 2011, 4, 1592.
24. H. Zhang, G. Cao, W. Wang, K. Yuan, B. Xu, W. Zhang, J. Cheng, Y. Yang, Electrochim. Acta, 2009, 54, 1153.
25. H. Mi, X. Zhang, S. An, X. Ye, S. Yang, Electrochem. Commun.,
2007, 9, 2859.
26. C. Meng, C. Liu, S. Fan, Electrochem. Commun., 2009, 11, 186.
27. Q. Liu, O. Nayfeh, M. H. Nayfeh, S. T. Yau, Nano Energy, 2013, 2,
133.
28. V. Khomenko, E. Frackowiak, F. Béguin, Electrochim. Acta, 2005,
50, 2499.
29. V. Gupta and N. Miura, Electrochim. Acta, 2006, 52, 1721.
30. S. B. Yoon, E. H. Yoon, K. B. Kim, J. Power Sources, 2011, 196,
10791.
31. Y. Zhou, Z. Y. Qin, L. Li, Y. Zhang, Y. L. Wei, L. F. Wang, M. F. Zhu, Electrochim. Acta, 2010, 55, 3904.
32. J. Ge, G. Cheng, L. Chen, Nanoscale, 2011, 3, 3084.
33. Z. Niu, P. Luan, S. Qi, H. Dong, J. Li, J. Chen, D. Zhao, L. Cai, W. Zhou, X. Chen, S. Xie, Energy Environ. Sci., 2012, 5, 8726.
34. F. Meng, J. Zhao, Y. Ye, X. Zhang, Q. Li, Nanoscale, 2012, 4, 7464.
35. L. Li, Z. Y. Qin, X. Liang, Q. Q. Fan, Y. Q. Lu, W. H. Wu, M. F. Zhu, J. Phys. Chem. C, 2009, 113, 5502.
36. C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett., 2010, 10, 4025.
37. H. Fan, N. Zhao, H. Wang, Y. Long, X. Li, J. Xu, RSC adv., 2012, 2,
11887.
38. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano, 2010, 4, 1963.
39. Y. Wang, X. Yang, L. Qiu, D. Li, Energy Environ. Sci., 2013, 6, 477.
40. L. Mao, K. Zhang, H. S. O. Chan, J. Wu, J. Mater. Chem., 2012, 22,
80.
41. W. Fan, C. Zhang, W. W. Tjiu, K. P. Pramoda, C. He, T. Liu, ACS Appl. Mater. Interfaces, 2013, 5, 3382.
42. Z. L. Wang, R. Guo, G. R. Li, H. L. Lu, Z. Q. Liu, F. M. Xiao, M. Zhang, Y. X. Tong, J. Mater. Chem., 2012, 22, 2401.
43. Y. Meng, K. Wang, Y. Zhang, Z. Wei, Adv. Mater., 2013, 25, 6985.
44. D. W. Wang, F. Li, J. Zhao, W. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu, H. M. Cheng, ACS Nano, 2009, 3, 1745.
45. H. P. Cong, X. C. Ren, P. Wang. S. H. Yu, Energy Environ. Sci.,
2013, 6, 1185.
46. G. Xiong, C. Meng, R. G. Reifenberger, P. P. Irazoqui, T. S. Fisher, Adv. Energy Mater., 2014, 4, 1300515.
47. L. Liu, Z. Niu, L. Zhang, W. Zhou, X. Chen, S. Xie, Adv. Mater.,
2014, 26, 4855.
48. J. A. Rogers, Y. G. Huang, Proc. Natl. Acad. Sci. U. S. A., 2009, 106,
10875.
49. H. Nishide, K. Oyaizu, Science, 2008, 319, 737.
50. http://www.maxwell.com/ultracapacitors
51. E. Frackowiak, F. Be´guin, Carbon, 2001, 39, 937.
52. Y. Liu, R. Deng, Z. Wang, H. Liu, J. Mater. Chem., 2012, 22, 13619.
53. E. Frackowiak, K. Metenier, V. Bertagna, F. Be´guin, Appl. Phys.
Lett., 2000, 77, 2421.
54. B. E. Conway, V. Birss, J.Wojtowicz, J. Power Sources, 1997, 66, 1.
55. B. E. Conway, J. Electrochem. Soc., 1991, 138, 1539.
56. C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Lett., 2006, 6,
2690.
57. B. E. Conway, Electrochemical Society 1996.
58. J. M. Miller, B. Dunn1, T. D. Tran, R. W. Pekala, J. Electrochem.
Soc., 1997, 11, 309.
59. X. Lang, L. Zhang, T. Fujita, Y. Ding, M. Chen, J. Power Sources,
2012, 197, 325.
60. Y. Wei, H. Dong, J. Xu, Q. Feng, Chem. Physchem., 2002, 9, 802.
61. Y. Wei, J. Xu, H. Dong, J. H. Dong, K. Y. Qiu, Chem. Mater., 1999,
11, 2023.
62. A. G. Green, A. E. Woodhead, J. Chem. Soc., Trans., 1910, 97, 2388.
63. A. G Macdiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Crys., 1985, 121, 173.
64. E. M. Genies, A. A. Syed, C. Tsintavies, Mol. Cryst. Liq. Cryst.,
1985, 121,181.
65. H. W. Kroto, J.R. Heath, S. C. O''Brien, R. F. Curl, R. E. Smalley,
Nature, 1985, 318, 162.
66. A. K. Geim, K. S. Novoselov, Nat Mater, 2007, 6, 183.
67. Iijima, Nature, 1991, 354, 56.
68. Y. Yan, Q. Cheng, G. Wanga, C. Li, J. Power Sources, 2011, 196,
7835.
69. S. Jiao, J. Tu, C. Fan, J. Hou, Derek J. Fray, J. Mater. Chem., 2011,
21, 9027.
70. Y. Zhao, H. Bai, Y. Hu, Y. Li, L. Qu, S. Zhang, G. Shi, J. Mater.
Chem., 2011, 21, 13978.
71. Y. Xian, F. Liu, L. Feng, F. Wu, L. Wang, L. Jin, Electrochem.
Commun., 2007, 9, 773.
72. G. R. Li, Z. P. Feng, J. H. Zhong, Z. L. Wang and Y. X. Tong, Macromolecules, 2010, 43, 2178.
73. L. Z. Fan, Y. S. Hu, J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti, Adv. Funct. Mater., 2007, 17, 3083.
74. X. Zhang, W. J. Goux, S. M. Manohar, J. Am. Chem. Soc., 2004,
126, 4502.
75. Z. Mandić, M. K. Roković, T. Pokupćić, Electrochim. Acta, 2009,
54, 2941.
76. H. W. Park, T. Kim, J. Huh, M. Kang, J. E. Lee and H. Yoon, ACS
nano, 2012, 6, 7624.
77. Y. E. Miao, W. Fan, D. Chen, T. Liu, ACS Appl. Mater. Interfaces,
2013, 5, 4423.
78. G. R. Li, Z. P. Feng, J. H. Zhong, Z. L. Wang, Y. X. Tong, Macromolecules, 2010, 43, 2178.
79. Y. Li, Q. Zhang, X. Zhao, P. Yu, L. Wu, D. Chen, J. Mater. Chem.,
2012, 22, 1884.
80. Y. G. Wang, H. Q. Li, Y. Y. Xia, Adv. Mater., 2006, 18, 2619.
81. Y. Cao, T. E. Mallouk, E. Chem. Mater., 2008, 20, 5260.
82. E. Frackowiak, K. Jurewicz, F. Beguin, Polish Journal of Chemistry,
2004, 78, 1345.
83. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. B´eguin, J. Power Sources, 2006, 153, 413.
84. X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Energy Environ. Sci., 2014,
7, 2160.
85. X. Xiao, T. P. Ding, L. Y. Yuan, Y. Q. Shen, Q. Zhong, X. H. Zhang, Y. Z. Cao, B. Hu, T. Zhai, L. Gong, J. Chen, Y. X. Tong, J. Zhou, Z. L. Wang, Adv. Energy Mater., 2012, 2, 1328.
86. http://en.wikipedia.org/wiki/Bionic
87. K. Liu, L. Jiang, Nano Today 2011, 6, 155.
88. Bhushan B, Koch K, Jung YC. Soft Matter 2008, 4, 799.
89. Bhushan B, Jung YC, Niemietz A, Koch K. Langmuir 2009, 25,
1659.
90. Y. Xia, Z. Xiao, X. Dou, H. Huang, X. Lu, R. Yan, Y. P. Gan, W. Zhu, J. Tu, W. Zhang, X. Y. Tao, ACS Nano, 2013, 7, 7083.
91. Y. Li, Z. Y. Fu, B. L. Su, Adv. Funct. Mater., 2012, 22, 4634.
92. O. Paris, G. F. Popovski, D. V. Opdenbosch, C. Zollfrank, Adv. Funct. Mater., 2013, 23, 4408.
93. C. J. Weng, C. H. Chang, C. W. Peng, S. W. Chen, J. M. Yeh, C. L. Hsu, Y. Wei, Chem. Mater., 2011, 23, 2075.
94. A. Zampieri, H. Sieber, T. Selvam, G. T. P. Mabande, W. Schwieger, F. Scheffler, S. Michael, P. Greil, Adv. Mater., 2005, 17, 344.
95. X. Y. Tao, Y. P. Li, J. Du, Y. Xia, Y. C. Yang, H. Huang, Y. P. Gan, W. K. Zhang, X. D. Li, J. Mater. Chem., 2011, 21, 9095.
96. E. Raymundo-Pinero, M. Cadek, F. Beguin, Adv. Funct. Mater.,
2009, 19, 1032.
97. Z. Schnepp, W. Yang, M. Antonietti, C. Giordano, Angew. Chem. Int. Ed., 2010, 49, 6564.
98. M. Biswal, A. Banerjee, M. Deoab, S. Ogale, Energy Environ. Sci.,
2013, 6, 1249.
99. J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Energy Environ. Sci., 2015, 8, 941.
100. M. S. Balathanigaimani, W. Shim, M. Lee, C. Kim, J. Lee, H. Moon, Electrochem. Commun., 2008, 10, 868.
101. T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G. Q. Lu, J. Power Sources, 2010, 195, 912.
102. X. Y. Tao, L. X. Dong, X. N. Wang, W. K. Zhang, B. J. Nelson, X. D. Li, Adv. Mater., 2010, 22, 2055.
103. J. Y. Huang, X. D. Wang, Z. L. Wang, Nano Lett., 2006, 6, 2325.
104. H. J. Liu, X. M. Wang, W. J. Cui, Y. Q. Dou, D. Y. Zhao, Y. Y. Xia, J. Mater. Chem., 2010, 20, 4223.
105. C. Jeffryes, J. Campbell, H. Li, J. Jiao, G. Rorrer, Energ. Environ.
Sci., 2011, 4, 3930.
106. Z. Li, L. Zhang, B. S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B. C. Olsen, C. M. B. Holt, D. Mitlin, Adv. Energy Mater., 2012, 2, 431.
107. Y. Xia, W. K. Zhang, Z. Xiao, H. Huang, H. J. Zeng, X. R. Chen, Y. P. Gan, X. Y. Tao, J. Mater. Chem., 2012, 22, 9209.
108. Y. Zhao, M. Wei, J. Lu, Z. L. Wang, X. Duan, ACS Nano, 2009, 3,
4009.
109. Y. J. Lee, H. Yi, W. J. Kim, K. Kang, D. S. Yun, M. S. Strano, G. Ceder, A. M. Belcher, Science, 2009, 324, 1051.
110. H. Zhou, T. Fan, D. Zhang, Q. Guo, H. Ogawa, Chem. Mater.,
2007, 19, 2144.
111. H. W. Shim, A. H. Lim, K. M. Min, D. W. Kim, CrystEngComm,
2011, 13, 6747.
112. H. Sun, L. Caoab, L. Lu, Energy Environ. Sci., 2012, 5, 6206.
113. Y. J. Kang, S. J. Chun, S. S. Lee, B. Y. Kim, J. H. Kim, H. Chung, S. Y. Lee, W. Kim, ACS Nano, 2012, 6, 6400.
114. H. Wang, L. Bian, P. Zhou, J. Tang, W. Tang, J. Mater. Chem. A,
2013, 1, 578.
115. A. Razaq, L. Nyholm, M. Sjödin, M. Strømme, A. Mihranyan, Adv. Energy Mater., 2012, 2, 445.
116. S. Li , D. Huang , B. Zhang , X. Xu , M. Wang, G. Yang, Y. Shen, Adv. Energy Mater., 2014, 4, 1301655.
117. L. Yuan, B. Yao, B. Hu, K. Huo, W. Chenb, J. Zhou, Energy
Environ. Sci., 2013, 6, 470.
118. A. N. Sokolov, F. L. Yap, N. Liu, K. Kim, L. Ci, O. B. Johnson, H. Wang, M. Vosgueritchian, A. L. Koh, J. Chen, J. Park, Z. Bao, Nat. Commun., 2013, 4, 2402.
119. S. L. Kuo, W. R. Liu, C. P. Kuo, N. L. Wu, H. C. Wu, J. Power
Sources, 2013, 244, 552.
120. S, Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E.J. Zimney, E.A. Stach, R. D. Piner, S. B.T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
121. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Nanoscale 2010 , 2,
2164.
122. S. Park, J, An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. B. T. Nguyen, R. S. Ruoff, Chem. Mater., 2008, 20, 6592.
123. L. Dauginet-De Pra, S. Demoustier-Champagne, Thin Solid Films,
2005, 479, 321.
124. A. Belmokhtar, A. Benyoucef, A. Zehhaf, A. Yahiaoui, C. Quijada, E. Morallon, Synth. Met., 2012, 162, 1864.
125. D. Wang, F. Li, J. Zhao, W. Ren, Z. Chen, J. Tan, Z. Wu, I. Gentle, G. Lu, H. Cheng, ACS Nano 2009, 3, 1745.
126. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, ACS Appl. Mater.
Interfaces 2010, 2, 821.
127. J. Xu, K. Wang, S. Z. Zu, B. H. Han, Z. Wei, ACS Nano, 2010, 4,
5019.
128. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 2010, 195, 3041.
129. Y. Gogotsi, P. Simon, Science, 2011, 334, 917.
130. L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou, Z. L. Wang, Angew. Chem. Int. Ed., 2012, 51, 4934.
131. Y. Xie, Y. Liu, Y. Zhao, Y. H. Tsang, S. P. Lau, H. Huang, Y. Chai, J. Mater. Chem. A, 2014, 2, 9142.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊