跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王尹吟
研究生(外文):WANG,YIN-YIN
論文名稱:利用低損傷氫氬電漿製備奈米銀線和還原氧化石墨烯混成薄膜應用於可撓曲透明電極之研究
論文名稱(外文):A Study on Hybrid Thin Film of Ag Nanowire and Reduced Graphene Oxide Prepared by H2-Low Damage Plasma as Flexible Transparent Electrode
指導教授:黃啟賢黃啟賢引用關係
指導教授(外文):HUANG,CHI-HSIEN
口試委員:劉定宇陳建光
口試委員(外文):LIU,TING-YUCHEN,JEM-KUN
口試日期:2016-07-26
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:71
中文關鍵詞:石墨烯氧化物低損傷電漿系統透明導電電極可撓式
外文關鍵詞:Graphene OxideLow Damage Plasma TreatmentTransparent Conductive ElectrodeFlexible
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯在透明導電電極中的應用具備很大的潛力。目前現在有許多方法 來製備石墨烯,其中,還原石墨烯氧化物(reduced graphene oxide)最具有量 產化的可能性。氧化石墨的基面鍵結了大量的氧化官能基團因此在水溶液中, 氧化基團親水作用而使得最上層的石墨烯克服石墨層間的凡德瓦力而剝離, 石墨烯氧化物就能由氧化石墨塊上,如同剝離洋蔥的方式而脫層下來。但是, 石墨烯氧化物的氧官能基團的存在,使得石墨烯氧化物為一絕緣體,影響在 透明導電薄膜上的應用。將石墨烯氧化物還原成石墨烯,也就是還原石墨烯 氧化物,增加其導電性已經有許多還原方法被提出,例如:N2H4, NaBH4 。 但是以上還原石墨烯氧化物都是利用化學還原法,此法非常耗時、對環境污 染高和都需經過高溫退火過程。使用氫電漿能快速且於低溫的環境下移除石 墨烯氧化物上的氧官能基團進而還原成石墨烯。但在電漿中存在著高能量離 子和真空紫外光,這兩種現象很容易破壞樣品和不易控制還原程度。在本研 究中,我們提出低損傷氫電漿系統來還原石墨烯氧化物,我們在感應耦合式 電漿和樣品中放置過濾片,它能阻擋高能量離子和真空紫外光只讓具有高反 應性的自由基透過擴散的方式和石墨烯氧化物進行反應。我們將石墨烯氧化 物塗佈在可撓式 PET 基板上再進行還原石墨烯氧化物,之後再利用低損傷 氫電漿系統進行還原。改變了電漿功率、處理時間和不同氣體的比例,從 X 光光電子能譜儀結果可以看出,石墨烯氧化物的氧官能基團可以有效的被移 除,。但是從片電阻和透光性得知電漿還原石墨烯氧化物還無法達到應用在 透明導電薄膜,最低之片電阻為 48k Ω/sq,其穿透度為 75%。從文獻中可得 知銀奈米線應用在透明電極具備高穿透度和低片電阻值,所以在可撓式 PET基板上先塗佈一層銀奈米線,之後再塗佈石墨烯氧化物,然後再進行電漿還 原處理。此混成薄膜可以得到片電阻為 117Ω/sq,同時可達到維持 81% 的 穿透度。
Graphene has a great potential for application in transparent conductive electrodes (TCEs). Several methods to produce graphene have been reported. Graphene oxide (GO) synthesized in large quantities from inexpensive graphite powder and solubilized in a variety of solvents, is a good candidate for bulk production of graphene-based materials. Unfortunately, the presence of oxygen functional groups in GO limits its application in TCEs. In order to reduce GO to graphene to increase its conductivity, many reducing agents have been proposed, such as N2H4 and NaBH4. However, the reduction of GO using these chemicals is time-consuming, harmful to the environment, and often involves additional annealing procedures. Hydrogen plasma treatment is very effective to remove these oxygen functional groups due to the generation of atomic hydrogen. However, damage caused by highly energetic ions and vacuum ultraviolet (VUV) to such atomically thin materials results in poor controllability of reduction. In this study, we propose hydrogen low damage plasma treatment (H2-LDPT) for GO reduction. A filter is inserted between inductively coupled plasma and the sample, thus efficiently shielding against highly energetic ions and VUV radiation, which cause the maximum damage to graphene. This allows only radicals, which have the highest reactivity among plasma-generated species, to diffuse through the filter with extremely low kinetic energy and reach the GO films to reduce them. Graphene oxide coated on poly (ethylene terephthalate) (PET) flexible substrates is converted to reduced graphene oxide (RGO) by using H2-LDPT. However, the requirements for transparent conductive thin film in terms of both sheet resistance and transmittance cannot be met. Ag nanowire (Ag-NW) is an alternative transparent electrode material with high transparency and low resistance. We embedded Ag nanowire into RGO films to obtain flexible transparent electrodes, combining the flexibility of RGO and the low resistance of Ag-NW. Graphene oxide coated on PET flexible substrate are reduced to RGO. XPS results show that the ratio of H2 to Ar, treatment time, and discharge power influence the oxygen composition of RGO. We introduced Ag-NWs between the RGO and PET. The Ag-NWs/ RGO hybrid films exhibited a sheet resistance of 117 Ω/sq and light transmittance of 81%. This hybrid film is very promising for application in flexible transparent electrodes.
目錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
誌謝 iii
中文摘要 iv
Abstract vi
目錄 viii
表目錄 xi
圖目錄 xii
第一章 緒論 1
第二章 文獻回顧 2
2.1 透明導電膜簡介 2
2.1.1 金屬薄膜 2
2.1.2 金屬氧化物薄膜 2
2.1.3 導電高分子類 3
2.1.4 金屬網格 4
2.1.5 新型碳材料類 6
2.2 石墨烯簡介 7
2.3 石墨烯之製備 8
2.3.1 機械剝離法製備 8
2.3.2 碳化矽基板上成長 9
2.3.3 化學氣相沉積法製備 10
2.3.4 石墨烯氧化物還原製備 11
2.4 奈米銀線簡介 13
2.5 奈米銀線之製備 14
2.6 研究動機 16
第三章 實驗方法與分析 17
3.1 實驗材料 17
3.2.1 旋轉塗佈機 18
3.2.2 超音波清洗機 19
3.2.3 低損傷電漿系統 20
3.2.4 放光光譜儀 22
3.2.5 紫外光/可見光分光光譜儀 23
3.2.6 四點探針 24
3.2.7 X光光電子能譜儀 25
3.2.8 掃描式電子顯微鏡 27
3.2.9 X光繞射分析儀 28
3.2.10 拉曼分析儀 30
3.3 實驗步驟及方法 32
3.3.1 薄膜分析流程圖 33
3.3.2 製備還原石墨烯氧化物薄膜 34
3.3.3 製備混成透明導電薄膜 35
第四章 結果與討論 36
4.1 電漿放光光譜分析 36
4.2.1 片電阻值和紫外光/可見光分光光譜儀分析 40
4.2.2 X光光電子能譜儀分析 45
4.2.3 X光繞射分析儀 49
4.2.4 拉曼光譜儀分析 54
4.3 奈米銀線特性分析 56
4.3.1 片電阻值分析和紫外光/可見光分光光譜儀分析 56
4.3.2 掃描式電子顯微鏡 57
4.4 混成透明導電薄膜之特性分析 58
4.4.1片電阻值分析/紫外光/可見光分光光譜儀分析 58
4.4.2 掃描式電子顯微鏡 62
4.5混成透明導電薄膜之應用分析 63
4.5.1混成透明導電膜之耐彎曲次數測試 63
第五章 結論 65
未來規劃 66
參考文獻 67

參考文獻
[1]Xuan Wang, Linjie Zhi, and Klaus Mullen. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett., 2008, 8, 323.
[2]Cecilia Mattevi, Goki Eda, Stefano Agnoli, Steve Miller, K. Andre Mkhoyan, Ozgur Celik, Daniel Mastrogiovanni, Gaetano Granozzi, Eric Garfunkel, and Manish Chhowalla. Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Adv. Funct. Mater., 2009, 19, 2577.
[3]Scott Gilje, Song Han, Minsheng Wang, Kang L. Wang and Richard B. Kaner, A Chemical Route to Graphene for Device Applications. Nano Lett., 2007, 7, 3394.
[4]Hyeon-Jin Shin, Ki Kang Kim, Anass Benayad, Seon-Mi Yoon, Hyeon Ki Park, In-Sun Jung, Mei Hua Jin, Hae-Kyung Jeong, Jong Min Kim, Jae-Young Choi and Young Hee Lee. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater., 2009, 19, 1987.
[5]Cristina Go ́mez-Navarro, R. Thomas Weitz, Alexander M. Bittner, Matteo Scolari, Alf Mews, Marko Burghard and Klaus Kern. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett., 2007, 7, 3499.
[6]Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312, 1191
[7]Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009 , 324, 1312
[8]蘇清源,石墨氧化物之特性與應用前景,物理雙月刊,2011,第33卷,163-167
[9]Junbo Wu, Mukul Agrawal, Héctor A. Becerril, Zhenan Bao, Zunfeng Liu, Yongsheng Chen and Peter Peumans. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano, 2010, 4, 43.
[10]Goki Eda, Yun-Yue Lin, Steve Miller, Chun-Wei Chen, Wei-Fang Su and Manish Chhowalla. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett., 2008, 92, 233305.
[11]Goki eda, Ph.D. Solution-processed thin films for electronics from single-walled carbon nanotubes and graphene. Thesis, Rutgers University, New Brunswick, NJ 2009.
[12]楊明輝,透明導電膜材料與成膜技術的新發展,工業材料雜誌,2002,第189期,161-174
[13]張光儀,添加金、銀於 AZO 透明導電薄膜中之研究,大同大學材料工程研究所碩士論文,2007
[14]Amy L. Linsebigler, Guangquan Lu, and John T. Yates, Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev., 1995, 95, 735-758.
[15]W. Adrian, Electrochemistry of Semiconductors. Current Separations, 1998, 17:3 , 87-91.
[16]林玫均,以溶膠凝膠法製備 AZO 透明導電薄膜及其在薄膜電晶體上之應用,國立臺南大學材料科學系碩士論文,2012
[17]吳知行、楊乾信,苯胺的電化學聚合,化工,1997,第44卷,101-114
[18]Chen, S. A., and Lin, L. C., Polyaniline Doped by the New Class of Dopant, Ionic Salt: Structure and Properties. Macromolecules, 1995, 28, 1239-1245.
[19]甘宜婷,聚苯胺 / X-Al2O3導電複合材料之製備與應用,南台科技大學化學工程與材料工程系,2010
[20]池茗權,觸控面板產業發展趨勢與展望,材料世界網,2015
[21]黃淑娟、 郭信良,新碳材時代-從奈米碳管到石墨烯,工業材料雜誌,2011,第291期,93-103
[22]洪偉修,世界上最薄的材料-石墨烯,98康熹化學報,2009
[23]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306, 666-669.
[24]H Hibino, S Tanabe, S Mizuno and H Kageshima. Growth and electronic transport properties of epitaxial graphene on SiC. J. Phys. D: Appl. Phys., 2012, 45 , 154008
[25]王證鈜,利用化學氣相沉積法成長之大面積單晶石墨烯及其在電晶體之應用,國立交通大學碩士論文,2009
[26]Jie Li, Changlun Chen,nJuan Wei, Jiaxing Li and Xiangke Wang. Enhanced Electrochemical Performance of Reduced Graphene Oxides by H2/Ar Plasma Treatment. J. Phys. Chem. C, 2014,118, 28440−28447.
[27]邱俊毅、蕭暐翰,新型透明導電薄膜材料技術簡介,工業材料雜誌,2013,第318期,84-96
[28]Xi Jin Xu, Guang Tao Fei, Xue Wei Wang, Zhen Jin, Wen Hui Yu, Li De Zhang. Synthetic control of large-area, ordered silver nanowires with different diameters. Mater. Lett., 2007, 61, 19–22.
[29]Rui-Long Zong , Ji Zhou , Qi Li , Bo Du , Bo Li , Ming Fu , Xi-Wei Qi and Long-Tu Li. S. J. Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane. Phys. Chem. B., 2004, 108, 16713-16716.
[30]Frederick Ochanda and Wayne E. Jones , Jr. Fabrication and Thermal Analysis of Submicron Silver Tubes Prepared from Electrospun Fiber Templates. Langmuir, 2007, 23 ,795–801.
[31]Michael H. Huang, Amer Choudreya and Peidong Yang. Ag nanowire formation within mesoporous silica. Chem. Commun, 2000, 1063-1064
[32]Yong-Jin Han, Ji Man Kim and Galen D. Stucky. Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chem. Mater., 2000, 12, 2068–2069
[33]Yugang Sun , Yadong Yin ,Brian T. Mayers ,Thurston Herricks and Younan Xia. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chem. Mater., 2002, 14, 4736–4745
[34]Tomokazu Ohchi, Shoji Kobayashi, Masanaga Fukasawa, Katsuhisa Kugimiya, Takashi Kinoshita, Toshifumi Takizawa1, Satoshi Hamaguchi1, Yukihiro Kamide and Tetsuya Tatsumi. Reducing Damage to Si Substrates during Gate Etching Processes. Jpn. J. Appl. Phys., 2009, 47, 5324.
[35]Seiji Samukawa, Masaru Hori, Shahid Rauf, Kunihide Tachibana, Peter Bruggeman, Gerrit Kroesen, J Christopher Whitehead, Anthony B Murphy, Alexander F Gutsol, Svetlana Starikovskaia. The 2012 Plasma Roadmap. J. Phys. D, 2012, 45, 253001.
[36]Chao Shen, Gaoshan Huang, Yingchun Cheng, Ronggen Cao, Fei Ding, Udo Schwingenschlögl and Yongfeng Mei. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Res. Lett., 2012, 7, 268.
[37]Henson, A. B.; Gersten, S.; Shagam, Y.; Narevicius, J.; Narevicius, E. Observation of Resonances in Penning Ionization Reactions at Sub-Kelvin Temperatures in Merged Beams. Science, 2012, 338, 234−238.
[38]Chi-Hsien Huang, Ching-Yuan Su c, Chao-Sung Lai, Yen-Cheng Li, Seiji Samukawa. Ultra-low-damage radical treatment for the highly controllable oxidation of large-scale graphene sheets. CARBON, 2014, 73, 244–251.
[39]M. Sookhakian, Y.M. Amin, W.J. Basirun. Hierarchically ordered macro-mesoporous ZnS microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue. Appl. Surf. Sci., 2013, 283,668–677.
[40]Wei-Hung Chiang, Ting-Chun Lin, Yan-Sheng Li, Yu-Jhe Yang and Zingway Pei. Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature. RSC Adv., 2016, 6, 2270–2278

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top