|
Arthur, J.S., Elce, J.S., Hegadorn, C., Williams, K. and Greer, P.A. (2000). Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 20, 4474-4481. Baranano, D.E., Rao, M., Ferris, C.D. and Snyder, S.H. (2002). Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 99, 16093-16098. Bear, M.F., Cooper, L.N. and Ebner, F.F. (1987). A physiological basis for a theory of synapse modification. Science 237, 42-48. Bear, M.F. and Malenka, R.C. (1994). Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4, 389-399. Behe, P., Stern, P., Wyllie, D.J., Nassar, M., Schoepfer, R. and Colquhoun, D. (1995). Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proc Biol Sci 262, 205-213. Berk, P.D. (1994). Bilirubin metabolism and the hereditary hyperbilirubinemias. Semin Liver Dis 14, 321-322. Bernardino, L., Xapelli, S., Silva, A.P., Jakobsen, B., Poulsen, F.R., Oliveira, C.R., Vezzani, A., Malva, J.O. and Zimmer, J. (2005). Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 25, 6734-6744. Bi, X., Chen, J. and Baudry, M. (1998). Calpain-mediated proteolysis of GluR1 subunits in organotypic hippocampal cultures following kainic acid treatment. Brain Res 781, 355-357. Bliss, T.V. and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. and Lipton, S.A. (1995). Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92, 7162-7166. Brana, C., Benham, C. and Sundstrom, L. (2002). A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res Brain Res Protoc 10, 109-114. Brouillard, R.P. (1974). Measurement of red blood cell life-span. JAMA 230, 1304-1305. Camins, A., Verdaguer, E., Folch, J. and Pallas, M. (2006). Involvement of calpain activation in neurodegenerative processes. CNS Drug Rev 12, 135-148. Chetkovich, D.M. and Sweatt, J.D. (1993). NMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem 61, 1933-1942. Ciani, L. and Salinas, P.C. (2008). From neuronal activity to the actin cytoskeleton: a role for CaMKKs and betaPIX in spine morphogenesis. Neuron 57, 3-4. Collingridge, G.L. and Bliss, T.V. (1995). Memories of NMDA receptors and LTP. Trends Neurosci 18, 54-56. Croall, D.E. and DeMartino, G.N. (1991). Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 71, 813-847. Cull-Candy, S., Brickley, S. and Farrant, M. (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11, 327-335. Czogalla, A. and Sikorski, A.F. (2005). Spectrin and calpain: a 'target' and a 'sniper' in the pathology of neuronal cells. Cell Mol Life Sci 62, 1913-1924. Dennery, P.A., Seidman, D.S. and Stevenson, D.K. (2001). Neonatal hyperbilirubinemia. N Engl J Med 344, 581-590. Dingledine, R., Borges, K., Bowie, D. and Traynelis, S.F. (1999). The glutamate receptor ion channels. Pharmacol Rev 51, 7-61. Dong, Y.N., Wu, H.Y., Hsu, F.C., Coulter, D.A. and Lynch, D.R. (2006). Developmental and cell-selective variations in N-methyl-D-aspartate receptor degradation by calpain. J Neurochem 99, 206-217. Dore, S. and Snyder, S.H. (1999). Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures. Ann N Y Acad Sci 890, 167-172. Dore, S., Takahashi, M., Ferris, C.D., Zakhary, R., Hester, L.D., Guastella, D. and Snyder, S.H. (1999). Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA 96, 2445-2450. Dudek, S.M. and Bear, M.F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 89, 4363-4367. Emi, Y., Omura, S., Ikushiro, S. and Iyanagi, T. (2002). Accelerated degradation of mislocalized UDP-glucuronosyltransferase family 1 (UGT1) proteins in Gunn rat hepatocytes. Arch Biochem Biophys 405, 163-169. Fernandes, A., Falcao, A.S., Silva, R.F., Gordo, A.C., Gama, M.J., Brito, M.A. and Brites, D. (2006). Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J Neurochem 96, 1667-1679. Fox, C.J., Russell, K.I., Wang, Y.T. and Christie, B.R. (2006). Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo. Hippocampus 16, 907-915. Goll, D.E., Thompson, V.F., Li, H., Wei, W. and Cong, J. (2003). The calpain system. Physiol Rev 83, 731-801. Gourley, G.R. (1997). Bilirubin metabolism and kernicterus. Adv Pediatr 44, 173-229. Grojean, S., Koziel, V., Vert, P. and Daval, J.L. (2000). Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp Neurol 166, 334-341. Guttmann, R.P., Baker, D.L., Seifert, K.M., Cohen, A.S., Coulter, D.A. and Lynch, D.R. (2001). Specific proteolysis of the NR2 subunit at multiple sites by calpain. J Neurochem 78, 1083-1093. Guttmann, R.P., Sokol, S., Baker, D.L., Simpkins, K.L., Dong, Y. and Lynch, D.R. (2002). Proteolysis of the N-methyl-d-aspartate receptor by calpain in situ. J Pharmacol Exp Ther 302, 1023-1030. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514. Harris, M.C., Bernbaum, J.C., Polin, J.R., Zimmerman, R. and Polin, R.A. (2001). Developmental follow-up of breastfed term and near-term infants with marked hyperbilirubinemia. Pediatrics 107, 1075-1080. Hering, H. and Sheng, M. (2001). Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2, 880-888. Hoffman, D.J., Zanelli, S.A., Kubin, J., Mishra, O.P. and Delivoria-Papadopoulos, M. (1996). The in vivo effect of bilirubin on the N-methyl-D-aspartate receptor/ion channel complex in the brains of newborn piglets. Pediatr Res 40, 804-808. Holtzman, N.A. (2004). Management of hyperbilirubinemia: quality of evidence and cost. Pediatrics 114, 1086-1088. Hsu, S.S., Newell, D.W., Tucker, A., Malouf, A.T. and Winn, H.R. (1994). Adenosinergic modulation of CA1 neuronal tolerance to glucose deprivation in organotypic hippocampal cultures. Neurosci Lett 178, 189-192. Huang, Y. and Wang, K.K. (2001). The calpain family and human disease. Trends Mol Med 7, 355-362. Huston, R.B. and Krebs, E.G. (1968). Activation of skeletal muscle phosphorylase kinase by Ca2+. II. Identification of the kinase activating factor as a proteolytic enzyme. Biochemistry 7, 2116-2122. Johnson, J.W. and Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529-531. Kandel, E.R. (2001). The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 21, 565-611. Kaplan, M. and Hammerman, C. (2005). Understanding severe hyperbilirubinemia and preventing kernicterus: adjuncts in the interpretation of neonatal serum bilirubin. Clin Chim Acta 356, 9-21. Kikuchi, A., Park, S.Y., Miyatake, H., Sun, D., Sato, M., Yoshida, T. and Shiro, Y. (2001). Crystal structure of rat biliverdin reductase. Nat Struct Biol 8, 221-225. Kim, M.J., Dunah, A.W., Wang, Y.T. and Sheng, M. (2005). Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46, 745-760. Krapivinsky, G., Krapivinsky, L., Manasian, Y., Ivanov, A., Tyzio, R., Pellegrino, C., Ben-Ari, Y., Clapham, D.E. and Medina, I. (2003). The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40, 775-784. Kristensen, B.W., Noraberg, J., Jakobsen, B., Gramsbergen, J.B., Ebert, B. and Zimmer, J. (1999). Excitotoxic effects of non-NMDA receptor agonists in organotypic corticostriatal slice cultures. Brain Res 841, 143-159. Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M. and et al. (1992). Molecular diversity of the NMDA receptor channel. Nature 358, 36-41. Laube, B., Kuhse, J. and Betz, H. (1998). Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18, 2954-2961. Linden, D.J. and Connor, J.A. (1995). Long-term synaptic depression. Annu Rev Neurosci 18, 319-357. Liu, J., Fukunaga, K., Yamamoto, H., Nishi, K. and Miyamoto, E. (1999). Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation. J Neurosci 19, 8292-8299. Liu, X., Rainey, J.J., Harriman, J.F. and Schnellmann, R.G. (2001). Calpains mediate acute renal cell death: role of autolysis and translocation. Am J Physiol Renal Physiol 281, F728-738. Liu, X.B., Murray, K.D. and Jones, E.G. (2004). Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci 24, 8885-8895. Loftis, J.M. and Janowsky, A. (2003). The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97, 55-85. Lynch, D.R. and Guttmann, R.P. (2001). NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets 2, 215-231. Lynch, D.R. and Guttmann, R.P. (2002). Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. J Pharmacol Exp Ther 300, 717-723. Malenka, R.C. and Bear, M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5-21. Massey, P.V., Johnson, B.E., Moult, P.R., Auberson, Y.P., Brown, M.W., Molnar, E., Collingridge, G.L. and Bashir, Z.I. (2004). Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24, 7821-7828. Mayer, M.L. and Westbrook, G.L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28, 197-276. McConkey, D.J. and Orrenius, S. (1997). The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun 239, 357-366. McDonald, J.W., Shapiro, S.M., Silverstein, F.S. and Johnston, M.V. (1998). Role of glutamate receptor-mediated excitotoxicity in bilirubin-induced brain injury in the Gunn rat model. Exp Neurol 150, 21-29. Miyoshi, H., Rust, C., Roberts, P.J., Burgart, L.J. and Gores, G.J. (1999). Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology 117, 669-677. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B. and Seeburg, P.H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529-540. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B. and Seeburg, P.H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217-1221. Mothet, J.P., Parent, A.T., Wolosker, H., Brady, R.O., Jr., Linden, D.J., Ferris, C.D., Rogawski, M.A. and Snyder, S.H. (2000). D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 97, 4926-4931. Nath, R., Raser, K.J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R.V., Yuen, P., Gilbertsen, R.B. and Wang, K.K. (1996). Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319 ( Pt 3), 683-690. Nicotera, P. and Lipton, S.A. (1999). Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab 19, 583-591. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.M. and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584-588. Noraberg, J., Kristensen, B.W. and Zimmer, J. (1999). Markers for neuronal degeneration in organotypic slice cultures. Brain Res Brain Res Protoc 3, 278-290. Ostrow, J.D., Pascolo, L., Brites, D. and Tiribelli, C. (2004). Molecular basis of bilirubin-induced neurotoxicity. Trends Mol Med 10, 65-70. Ostrow, J.D., Pascolo, L., Shapiro, S.M. and Tiribelli, C. (2003a). New concepts in bilirubin encephalopathy. Eur J Clin Invest 33, 988-997. Ostrow, J.D., Pascolo, L. and Tiribelli, C. (2003b). Reassessment of the unbound concentrations of unconjugated bilirubin in relation to neurotoxicity in vitro. Pediatr Res 54, 926. Ostrow, J.D. and Tiribelli, C. (2003). Bilirubin, a curse and a boon. Gut 52, 1668-1670. Panatier, A., Theodosis, D.T., Mothet, J.P., Touquet, B., Pollegioni, L., Poulain, D.A. and Oliet, S.H. (2006). Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125, 775-784. Pereira, P.J., Macedo-Ribeiro, S., Parraga, A., Perez-Luque, R., Cunningham, O., Darcy, K., Mantle, T.J. and Coll, M. (2001). Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Nat Struct Biol 8, 215-220. Perez-Otano, I. and Ehlers, M.D. (2005). Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28, 229-238. Premkumar, L.S. and Auerbach, A. (1997). Stoichiometry of recombinant N-methyl-D-aspartate receptor channels inferred from single-channel current patterns. J Gen Physiol 110, 485-502. Reiser, D.J. (2004). Neonatal jaundice: physiologic variation or pathologic process. Crit Care Nurs Clin North Am 16, 257-269. Ruetten, H. and Thiemermann, C. (1997). Effect of calpain inhibitor I, an inhibitor of the proteolysis of I kappa B, on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat. Br J Pharmacol 121, 695-704. Rumbaugh, G. and Vicini, S. (1999). Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J Neurosci 19, 10603-10610. Saido, T.C., Sorimachi, H. and Suzuki, K. (1994). Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J 8, 814-822. Salim, M., Brown-Kipphut, B.A. and Maines, M.D. (2001). Human biliverdin reductase is autophosphorylated, and phosphorylation is required for bilirubin formation. J Biol Chem 276, 10929-10934. Saneyoshi, T., Wayman, G., Fortin, D., Davare, M., Hoshi, N., Nozaki, N., Natsume, T. and Soderling, T.R. (2008). Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57, 94-107. Sattler, R. and Tymianski, M. (2000). Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78, 3-13. Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N., and Jan, L.Y. (1994). Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144-147. Silva, A.P., Pinheiro, P.S., Carvalho, A.P., Carvalho, C.M., Jakobsen, B., Zimmer, J. and Malva, J.O. (2003). Activation of neuropeptide Y receptors is neuroprotective against excitotoxicity in organotypic hippocampal slice cultures. FASEB J 17, 1118-1120. Simpkins, K.L., Guttmann, R.P., Dong, Y., Chen, Z., Sokol, S., Neumar, R.W. and Lynch, D.R. (2003). Selective activation induced cleavage of the NR2B subunit by calpain. J Neurosci 23, 11322-11331. Soorani-Lunsing, I., Woltil, H.A. and Hadders-Algra, M. (2001). Are moderate degrees of hyperbilirubinemia in healthy term neonates really safe for the brain? Pediatr Res 50, 701-705. Stevenson, D.K., Dennery, P.A. and Hintz, S.R. (2001). Understanding newborn jaundice. J Perinatol 21 Suppl 1, S21-24; discussion S35-29. Stocca, G. and Vicini, S. (1998). Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J Physiol 507 ( Pt 1), 13-24. Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., and Ames, B.N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043-1046. Suzuki, K. and Sorimachi, H. (1998). A novel aspect of calpain activation. FEBS Lett 433, 1-4. Syntichaki, P. and Tavernarakis, N. (2003). The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 4, 672-684. Tashiro, A. and Yuste, R. (2004). Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 26, 429-440. Tomaro, M.L. and Batlle, A.M. (2002). Bilirubin: its role in cytoprotection against oxidative stress. Int J Biochem Cell Biol 34, 216-220. Tovar, K.R. and Westbrook, G.L. (1999). The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19, 4180-4188. Tsien, J.Z., Huerta, P.T. and Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327-1338. Vornov, J.J., Tasker, R.C. and Coyle, J.T. (1991). Direct observation of the agonist-specific regional vulnerability to glutamate, NMDA, and kainate neurotoxicity in organotypic hippocampal cultures. Exp Neurol 114, 11-22. Wenthold, R.J., Petralia, R.S., Blahos, J., II, and Niedzielski, A.S. (1996). Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16, 1982-1989. Wenzel, A., Fritschy, J.M., Mohler, H. and Benke, D. (1997). NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 68, 469-478. Wu, H.Y. and Lynch, D.R. (2006). Calpain and synaptic function. Mol Neurobiol 33, 215-236. Zhang, L., Liu, W., Tanswell, A.K. and Luo, X. (2003). The effects of bilirubin on evoked potentials and long-term potentiation in rat hippocampus in vivo. Pediatr Res 53, 939-944. Zimmerman, U.J., Boring, L., Pak, J.H., Mukerjee, N. and Wang, K.K. (2000). The calpain small subunit gene is essential: its inactivation results in embryonic lethality. IUBMB Life 50, 63-68. Zucker, R.S. (1989). Short-term synaptic plasticity. Annu Rev Neurosci 12, 13-31.
|