|
[1] Onogawa, Tsukuba, and Ibaraki, “Industrialization of Nanoelectronics,” International Workshop on Dielectric Thin Films for future VLSI devices : science and technology, p. 1, 2008. [2] Process integration, devices, and structures, in International Technology Roadmap for Semiconductors (ITRS), http://publoc.itrs.net, 2003. [3] S. G. Yoon, J. C. Lee, and A. Safari, “Preparation of thin-film (Ba0.5,Sr0.5)TiO3 by the laser ablation technique and electrical properties,” J. Appl. Phys., vol. 76, p. 2999, 1994. [4] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, p. 4823, 1998. [5] S. A. Campbell, D. C. Gilmer, X.-C. Wang, M.-T. Hsieh, H.-S. Kim, W. L. Gladfelter, and J. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, p. 104, 1997. [6] B. Cheng et al, “The impact of high-k gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Tran. Electron Device, vol. 46, p. 1537, 1999. [7] J. D. Plummer and P. B. Griffin, “Material and process limits in silicon VLSI technology,” Proc. IEEE, vol. 89, p. 240, 2001. [8] T. M. Pan, C. L. Chen, W. W. Yeh, and W. J. Lai, “Physical and Electrical Properties of Lanthanum Oxide Dielectrics with Al and Al/TaN Metal Gates,” Solid State Electron, vol. 10, p. H101, 2007. [9] R. D. Shannon “Dielectric polarizabilities of ions in oxides and fluorides,” J. Appl. Phys., vol. 73, p. 348, 1993. [10] H. J. Osten, J. P. Liu, and H. J. Mussig, “Band gap and band discontinuities at crystalline Pr2O3/Si(001) heterojunctions,” Appl. Phys. Lett., vol. 80, p. 297, 2002. [11] T. M. Pan, C. L. Chen, W. W. Yeh, and S. J. Hou, “Structural and electrical characteristics of thin erbium oxide gate dielectrics,” Appl. Phys. Lett., vol. 89, p. 222912, 2006. [12] W. Zhu, T. Tamagawa, J. Kim, R. Carruthers, M. Gibson, T. Furukawa, Y. Di, and T. P. Ma, “HfO2 and HfAlO for CMOS: Thermal Stability and Current Transport,” IEDM Tech. Dig., 2001, p. 463. [13] M. Koyama, K. Suguro, M. Yoshiki, Y. kammimuta, M. Koike, M. Ohse, C. Hongo, and A. Nishiyama, “Influences of annealing temperature on characteristics of Ge p-channel metal oxide semiconductor field effect transistors with ZrO2 gate dielectrics ,“ J. Appl. Phys., vol. 45, p. 5651, 2001. [14] G. Lucovsky, J. Vac. Sci. Technol. A19, p. 1553, 2001. [15] M. Houssa and M. Heyns, In:Houssa, M. (Ed), “High-k Gate Dielectrics,” IOP, Bristol, Bristol, p. 3, 2004. [16] C. Hobbs, et. Al., “Fermi-level pinning at the polysilicon/metal oxide interface-Part I,” IEEE Trans. Elect. Dev. vol. 51, p. 971, 2004. [17] A. Kerber, et. Al., “Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics,” IEEE Elect. Dev. Lett. vol. 24, p. 87, 2003. [18] T. Busani and R. A. B. Devine. “The importance of network structure in high-k dielectrics: LaAlO3, Pr2O3, and Ta2O5,” J. Appl. Phys. vol. 98, p. 044102, 2005. [19] J. Robertson “High dielectric constant oxides,” Eur. Phys. J. Appl. Phys., vol. 28, p. 265, 2004 [20] A. I. Kingon, J. P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, vol. 406, p. 1032, 2000. [21] S. Jeon and H. Hwang, “Electrical and physical characteristics of PrTixOy for metal-oxide-semiconductor gate dielectric applications,” Appl. Phys. Lett., vol. 81, p. 4856, 2002. [22] J. Paivasaari, M. Putkonen, and L. Niinistf, “A Comparative study on lanthanide oxide thin films grown by atomic layer deposition,” Thin Solid Film, vol. 472, p. 275, 2005. [23] J. Robertson, “Band offsets of wide-band-gap oxides and implications for feature electronic devices,” Journal of Vacuum Science & Technology B, vol. 18, p. 1785, 2000. [24] G. D. Wilk, “High- gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, p. 5254, 2001. [25] T. Bieger, J. maier, and R. Waser, “Optical Investigation of Oxygen Incorporation in SrTiO3,” Solid State Ionics 53-56, p. 578, 1992. [26] J. Roberston, “Electronic structure and band offset in High K oxides,” IWGI, p. 77, 2001. [27] J. Robertson et al, “Band offsets and Schottky barrier heights of high dielectric constant oxides,” J. Appl. Phys. vol. 92, p. 4712, 2002. [28] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, and I. Kashiwagi, et al. “Advanced gate dielectric materials for sub-100 nm CMOS,” in IEDM Tech. Dig., 2002. p. 625. [29] S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, and S. Choi, et al. “Excellent electrical characteristics of lanthanide (Pr, Nd, Sm, Gd, and Dy) oxide and lanthanide-doped oxide for MOS gate dielectric applications,” in IEDM Tech. Dig., 2001. p. 471. [30] T. Zdanovicz and L. Zdanowicz, “Preparation and some electrical properties of thulium oxide films, “ Thin Solid Films vol. 58, p. 390, 1979 [31] H. harris, K. Choi, N. Mehta, A. Chandolu, N. Biswas, G. Kipshidze, and S. Nikishin, “HfO2 gate dielectric with 0.5 nm equivalent oxide thickness,” Appl. Phys. Lett. vol. 81, p. 1065, 2002. [32] M. P. Singh, C. S. Thakur, K. Shalini, N. Bhat, and S. A. Shivashankar, “Structural and electrical characterization of erbium oxide films grown on Si(100) by low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. vol. 83, p. 2889, 2003. [33] H. Ono and T. Katsumata, “Interfacial reactions between thin rare-earth-metal oxide films and Si substrates,” Appl. Phys. Lett. vol. 78, p. 1832, 2001. [34] V. Mikhelashvili, G. Eisenstein, F. Edelman, R. Brener, N. Zakharov, and p. Werner, “Structural and electrical properties of electron beam gun evaporated Er2O3 insulator thin films,” J. Appl. Phys. vol. 95, p. 613, 2004. [35] O. Renault, D. Samour, J.-F. Damlencourt, D. Blin, F. Martin, S. Marthon, N. T. Barrett, and P. Besson, “HfO2/SiO2 interface chemistry studied by synchrotron radiation x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 81, p. 3627, 2002. [36] J. H. Oh, H. W. Yeom, Y. Hagimoto, K. Ono, M. Oshima,N. Hirashita, M. Nywa, and A. Toriumi, and A. Kakizaki, “Chemical structure of the ultrathin SiO2/Si(100) interface: An angle-resolved Si 2p photoemission study,” Phys. Rve. B, vol. 63, p. 205310, 2001. [37] E. C. ONYIRIUKA, “Aluminum, Titanium Boride, and Nitride Films Sputter-Deposited from Multicomponent Alloy Targets Studied by XPS,” Applied Spectroscopy, vol. 47, issue 1, p. 35, 1993. [38] K. Kishi and S. Ikeda, “X-Ray Photoelectron Spectroscopic Study for the Reaction of Evaporated Iron with O2 and H2O,” Chem. Soc. Jpn. vol. 46, p. 341, 1973 [39] J. Robertson, “Interfaces and defects of high-K oxides on silicon,” Solid-State Electron. vol. 49, p. 283, 2005. [40] W. A. Hill and C. C. Coleman, “A single–frequency approximation for interface-state density determination,” Solid State Electron., vol. 23, p. 987, 1980. [41] H. harris, K. Choi, N. Mehta, A. Chandolu, N. Biswas, G. Kipshidze, and S. Nikishin, “HfO2 gate dielectric with 0.5 nm equivalent oxide thickness,” Appl. Phys. Lett. vol. 81, p. 1065, 2002. [42] B. Ricco, G. Gozzi, and M. Lanzoni, “Modeling and simulation of stress-induced leakage current in ultrathin SiO2 films,” IEEE Trans. Electron Devices, vol. 45, p. 1554, 1998. [43] R. B. van Dover, “Amorphous lanthanide-doped TiOx dielectric films,” Appl. Phys. Lett., vol. 74, p. 3041, 1999. [44] J. Chen, J. Lian, L. M. Wang, R. C. Ewing, and L. A. Boatner, “X-ray photoelectron spectroscopy study of irradiation-induced amorphizaton of Gd2Ti2O7,” Appl. Phys. Lett., vol. 79, p. 1989, 2001. [45] T. Schroeder, G. Lupina, J. Dabrowski, A. Mane, Ch. Wenger, G. Lippert, and H.-J. Müssig, “Titanium-added praseodymium silicate high-k layers on Si (001),” Appl. Phys. Lett., vol. 87, p. 022902, 2005. [46] J. A. Taylor, G. M. Lancaster, A. Ignatiev and J. W. Rabalais, “Interactions of Ion Beams with Surfaces: Reactions of Nitrogen with Silicon and its Oxides,” J. Chem. Phys. vol. 68, p. 1776, 1978. [47] A. Laha, H. J. Osten, and A. Fissel, “Influence of interface layer composition on the electrical properties of epitaxial Gd2O3 thin films for high-K application,” Appl. Phys. Lett., vol. 90, p. 113508, 2007. [48] C. C. Fulton, G. Lucovsky, and R. J. Nemanich, “Electronic states at the interface of Ti-Si oxide on Si(100),” J. Vac. Sci. Technol. B, vol. 20, p. 1726, 2002. [49] B. D. Paladia, W. C. Lang, P. R. Norris, L. M. Watson, and P. J. Fabian, Proc. Roy. Soc. Ser., A 354, p. 269, 1977 [50] T. M. Pan and W. S. Huang, “Effects of Oxygen Content on the Structural and Electrical Properties of Thin Yb2O3 Gate Dielectrics,” Journal of The Electrochemical Society., vol. 156, p. G6, 2009 [51] S. Ohmi, C. Kobayashi, I. Kashiwagi, C. Ohshima, H. Ishiwara, and H. Iwai, “Characterization of La2O3 and Yb2O3 Thin Films for High-k Gate Insulator Application,” Journal of The Electrochemical Society., vol. 150, p. F134, 2003 [52] T. Wiktorczyk and C. Wesolowska, “Some electrical properties of thin Yb/sub 2/O/sub 3/ films produced by different technological methods,” Thin Solid Films, vol. 91, p. 9, 1982. [53] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, and Y. Kim, et al., “Advanced gate dielectric materials for sub-100 nm CMOS,” in IEDM Tech. Dig. p. 625, 2002. [54] Y. Uwamino, Y. Ishizuka, and H. J. Yamatera, Electron Spectrosc. Relat. Phenom., vol. 34, p. 69, 1984
|