跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/09/10 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃繼增
研究生(外文):Ji-Tzeng Huang
論文名稱:在大腸桿菌中形成包涵體的蛋白質的重新摺疊
論文名稱(外文):Refolding of the recombinant protein that forms inclusion bodies in Escherichia coli
指導教授:胡念台
指導教授(外文):Nien-Tai Hu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農業生物科技學研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:57
中文關鍵詞:重新摺疊大腸桿菌包涵體蛋白質
外文關鍵詞:refoldingEscherichia coliinclusion bodiesprotein
相關次數:
  • 被引用被引用:3
  • 點閱點閱:691
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
大腸桿菌表現系統是目前生產異源蛋白的最佳途徑,瓶頸之一是有時會在胞內形成包涵體,大量合成的蛋白因而出現在不可溶部分,目前解決方法是以8 M urea或6 M guanidinium hydrochloride將包涵體溶解,再經由透析,逐漸降低urea或guanidinium hydrochloride的濃度,使變性的蛋白重新摺疊,恢復原來蛋白的結構與活性。本研究利用6×His tag與鎳離子的親和性,探討變性蛋白直接在管柱中進行重新摺疊的可行性,同時藉由個別酵素比活性的測定,追蹤TrxA-GST3融合蛋白重新摺疊的回復率,並與經透析重新摺疊的回復率比較。結果發現TrxA-GST3融合蛋白N端的thioredoxin以透析法或直接在Ni-NTA管柱中進行重新摺疊,其氧化還原活性回復率皆高達50﹪左右,顯示利用Ni-NTA管柱進行變性蛋白的重新摺疊,其回復率有可能達到和透析法相同的回復率。另一方面TrxA-GST3融合蛋白C端的GST-3酵素經過透析,在蛋白濃度0.075 mg/ml時,重新摺疊的回復率可以達到56﹪,然而在Ni-NTA管柱中的回復率,最高只有透析法回復率的六分之一;且透析時蛋白濃度對回復率有顯著的影響,蛋白濃度為0.075-0.185 mg/ml時,GST-3酵素重新摺疊的回復率可達40-56﹪,而蛋白濃度高於或低於此範圍時,回復率就下降至15-25﹪。相較之下,TrxA-GST3融合蛋白N端的thioredoxin經透析重新摺疊的回復率,比較不受蛋白濃度的影響。
Abstract
The Escherichia coli expression system is by far the best way for the over-expression of recombinant proteins. However, one of the major obstacles in utilizing E. coli for over-expressing recombinant proteins arises from inclusion body formation. The over-expressed recombinant proteins appear in an insoluble form. In order to make the recombinant proteins soluble, strong protein denaturant such as 8 M urea or 6 M guanidinium hydrochloride is used. Subsequently, urea or guanidinium hydrochloride is removed gradually by dialysis to allow refolding of the denatured proteins. In this study, by making use of the specific binding between 6×His tag and Ni2+, I explored the possibility of efficient protein refolding upon Ni-affinity chromatography. A chimeric gene transcribed from a T7 promoter for over-expressing a 6×His-tagged TrxA-GST3 fusion protein was constructed. By following the specific activities of thioredoxin and glutathione S-transferase, I could determine and compare the refolding efficiencies quantitatively. Analysis of the results indicated that, either by dialysis or upon Ni-affinity chromatography, the refolding efficiency of the thioredoxin activity could reach as high as approximately 50%. This result suggests that it is possible to achieve the refolding efficiency achievable by dialysis by refolding upon Ni-affinity chromatography. In contrast, while the refolding efficiency of the glutathione S-transferase activity by dialysis could reach 56% (at the protein concentration of 0.075 mg/ml), the refolding in Ni-affinity chromatography was only one-sixth as efficient. Moreover, the recovery of glutathione S-transferase activity by dialysis was apparently influenced by protein concentration. At the protein concentrations of 0.075-0.185 mg/ml, the refolding efficiencies could reach 40-56 %. When the protein concentration was above or below 0.075-0.185 mg/ml, the refolding efficiencies dropped to 15-25 %. On the other hand, the recovery of thioredoxin activity by dialysis was relatively unaffected by protein concentration.
中文摘要 1
英文摘要 2
前言 3
材料方法 8
結果 21
討論 28
參考文獻 33
圖表 38
附錄 50
參考文獻
江芳銘。1992。麩胱甘轉基的異構在小菜蛾幼蟲分解有機磷殺蟲劑上的功能。碩士論文。國立中興大學昆蟲學系。台中市。中華民國。
姚盈娥。1996。小菜蛾麩胱甘轉基cDNA之選殖。碩士論文。國立中興大學昆蟲學系。台中市。中華民國。
陳靜美。1999。CBD融合蛋白質應用於檢驗試劑的開發。碩士論文。國立中興大學獸醫學系。台中市。中華民國。
楊世杰。1997。利用Pichia pastoris表現系統表現外來蛋白質。碩士論文。國立中興大學獸醫學系。台中市。中華民國。
Ahmed, A. K., S. W. Schaffer, and D. B. Wetlaufer. 1975. Nonenzymatic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers. J. Biol. Chem. 250: 8477-8482.
Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.
Board, P., R. J. Russell, R. J. Marano, and J. G. Oakeshoot. 1994. Purification, molecular cloning and heterologous expression of a glutatione S-transferase from the Australian sheep blowfly (Lucilia cuprina). Biochem. J. 299: 425-430.
Buchanan, Bob B., Peter Schurmann, Paulette Decotignies, and Rosa M. Lozano. 1994. Thioredoxin: a multifunctional regulatory protein with a bright future in technology and medicine. Arch. Biochem. Biophys. 314: 257-260.
Buchner, J., and R. Rudolph. 1991. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Bio/Technology. 9: 157-162.
Buchner, J., I. Pastan, and U. Brinkmann. 1992. A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem. 205: 263-270.
Cohen, S. N., A. C. Y. Chang, and L. Hsu. 1972. Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R factor DNA. Proc. Natl. Acad. Sci. USA. 69: 2110-2114.
Gribskov, M. and R. R. Burgess. 1983. Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene. 26: 109-118.
Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580.
Hlavac, F., and E. Rouer. 1997. Expression of the protein-tyrosine kinase p56lck by the p vector yields a highly soluble protein recovered by mild sonication. Protein Expr. Purif. 11: 227-232.
Holmgren, Arne. 1985. Thioredoxin. Ann. Rev. Biochem. 54: 237-271.
Hsih, M. H., J. C. Kuo, and H. J. Tsai. 1997. Optimization of the solubilization and renaturation of fish growth hormone produced by Escherichia coli. App. Microbiol. Biotechnol. 48: 66-72.
Iyer, L., and M. J. Ratain. 1998. Pharmacogenetics and cancer chemotherapy. Eur. J. Cancer. 34: 1493-1499.
Kao, C. H., and C. N. Sun. 1991. In vitro degradation of some organophosphorus insecticides by susceptible and resistant dimondback moth. Pestic. Biochem. Physiol. 41: 132-141.
Kao, C. H., C. F. Hung, and C. N. Sun. 1989. Parathion and methyl parathion resistance in dimondback moth (Lepidoptera: Plutellidae) larvae. J. Econ. Entomol. 82: 1299-1304.
Keen, J. H., and W. B. Jakoby. 1978. Glutathione transferase: Catalysis of nucleophilic reactions of glutathione. J. Biol. Chem. 253: 5654-5657.
Lilie, H., E. Schwarz, and R. Rudolph. 1998. Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 9: 497-501.
Lin, W. J., and J. A. Traugh. 1993. Renaturation of casein kinase II from recombinant subunits produced in Escherichia coli: purification and characterization of the reconstituted holoenzyme. Protein Expr. Purif. 4: 256-264.
Lopez, M. F., W. F. Patton, W. B. Sawlivich, H. Erdujument-Bromage, P. Barry, K. Gmyrek, T. Hines, P. Tempst, and W. M. Skea. 1994. A glutathione S-transferase (GST) isozyme from broccoli with significant sequence homology to the mammalian theta-class of GSTs. Biochim. Biophys. Acta. 1205: 28-38.
Luthman, M., and A. Holmgren. 1982. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 21: 6628-6633.
Meyer, D. J., B. Coles, S. E. Pemble, K. S. Gilmore, G. M. Fraser, and B. Ketterer. 1991. Theta, a new class of glutathione transferases purified from rat and man. Biochem. J. 274: 409-414.
Oswald, T., W. Wende, A. Pingoud, and U. Rinas. 1994. Comparison of N-terminal affinity fusion domains: effect on expression level and product heterogeneity of recombinant restriction endonuclease EcoRV. App. Microbiol. Biotechnol. 42: 73-77.
Pickett, C. B., and Anthony Y. H. Lu. 1989. Glutathione S-transferases: gene structure, regulation, and biological function. Ann. Rev. Biochem. 58: 743-764.
Rogl, H., K. Kosemund, W. Kuhlbrandt, and I. Collinson. 1998. Refolding of Escherichia coli produced membrane protein inclusion bodies immobilised by nickel chelating chromatography. FEBS Lett. 432: 21-26.
Rudolph, R. and H. Lilie. 1996. In vitro folding of inclusion body proteins. FASEB L. 10: 49-56.
Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A Laboratory Manual. Cold springt harbor labortory, cold spring harbor, New York.
Sanchez, L., M. Ayala, F. Freyre, I. Pedroso, H. Bell, V. Falcon, and J. V. Gavilondo. 1999. High cytoplasmic expression in E. coli, purification, and in vitro refolding of a single chain Fv antibody fragment against the hepatitis B surface antigen. J. Biotechnol. 72: 13-20.
Schein, C. H., and M. H. M. Noteborn. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology. 6: 291-294.
Schultz, L. W., Peter T. Chivers, and Ronald T. Raines. 1999. The CXXC motif: crystal structure of an active-site variant of Escherichia coli thioredoxin. Acta Cryst. D55: 1533-1538.
Studier, F. W., and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned gene. J. Mol. Biol. 189: 113-130.
Wetlaufer, D. B., P. A. Branca, and G. X. Chen. 1987. The oxidative folding of proteins by disulfide plus thio does not correlate with redox potential. Protein Eng. 2: 141-146.
Wilce, C. J. Matthew., and Michael. W. Parker. 1994. Structure and function of glutathione S-transferases. Biochim. Biophys. Acta. 1025: 1-18.
Wilce, C. J. Matthew., Philip G. Board, Susanne C. Feil, and Michael. W. Parker. 1995. Crystal structure of a theta-class glutathione transferases. EMBO J. 14: 2133-2143.
Yanisch-Perron, C., J. Vieira. and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 33: 103-119.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊