跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Rezka Larasati
研究生(外文):Rezka Larasati
論文名稱:芭樂葉萃取物與合成的三唑化合物對蛋白酪氨酸磷酸酶1B和雙胜肽基胜肽酶IV的抑制效力
論文名稱(外文):Inhibition Potencies Of Guava Leaf Extracts And Synthetic Triazole Compounds On Protein Tyrosine Phosphatase 1B (PTP1B) And Dipeptidyl Peptidase-IV (DPP-IV) Enzymes
指導教授:蔡建鈞蔡建鈞引用關係
指導教授(外文):Tsai, Henry, J.
口試委員:蔡建鈞蒙美津吳介信
口試委員(外文):Tsai, Henry, J.Mong, Mei-ChinWu, Jackson
口試日期:2012-06-27
學位類別:碩士
校院名稱:亞洲大學
系所名稱:保健營養生技學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:99
語文別:英文
論文頁數:57
中文關鍵詞:酶抑制活性蛋白酪氨酸磷酸酶1B (PTP1B)雙胜肽基胜肽酶IV (DPP-IV)124 三唑化合物對芭樂葉萃取物
外文關鍵詞:guava leaf extracts1,2,4 triazole compoundsprotein tyrosine phosphatase 1b (PTP1B)dipeptidyl peptidase-IV (DPP-IV)inhibition activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病 (Diabetes Mellitus) 是一種慢性疾病,雖然它有許多不同的病因,但它們有一個共同的 特點就是高血糖。糖尿病在現代社會的漸漸流行使得尋找新的治療方法有其急迫性。雙胜肽基胜肽酶IV (Dipeptidyl Peptidase-Ⅳ, DPP-IV) 和蛋白酪氨酸磷酸酶1B (Protein Tyrosine Phosphatase-1B, PTP1B) 是兩個作為抗糖尿病化合物開發很好目標,但是這兩種酵素的抑制劑須要作謹慎地評估才能判斷是否值得開發。番石榴葉因為它有降血糖的作用,早已在亞洲及非洲被用來作為一種民間傳統醫藥。 而1,2,4 - 三唑 (1,2,4-triazole) 是一種常出現在各種天然產物的結構,由於他們在生物醫藥和農藥領域的活性,已引起了人們的關注。
這項研究的目標是評估番石榴葉萃取物對PTP1B酶的抑制作用及合成的1,2,4 -三唑化合物對PTP1B與DPP-IV酶的抑制效力。我們已取得番石榴葉水萃取物和14種1,2,4-三唑類化合物的樣品。我們評估檢測番石榴葉水萃取物對PTP1B及 T細胞蛋白酪氨酸磷酸酶 (T Cell Protein Tyrosine Phosphatase, TCPTP) 的選擇性。同時我們測試三唑類化合物對PTP1B與DPP-IV酶的活性抑制。
結果顯示,番石榴葉萃取物的第5分層具有最好的PTP1B酶抑制活性,其IC50值為0.160±0.013毫克/升,並提供了對TCPTP超過2倍的選擇性。三唑化合物方面,化合物-4具最強PTP1B酶的抑制效果,其體外抑制活性IC50值為 25 µM。化合物-4與-12具有最強的DPP-IV抑制效果,其IC50值分別為10 µM和5 µM。從這個實驗結果顯示,番石榴葉萃取物和合成1,2,4-三唑類化合物有明顯的PTP1B的DPP-IV酶抑。

Diabetes mellitus (DM) is a chronic disease that is characteristic of hyperglycemia with various etiologies. The rising prevalence of diabetes mellitus has fueled an intensified search for new therapeutic treatments. Dipeptidyl peptidase IV (DPP-IV) and protein tyrosine phosphatase 1b (PTP1B) are two major enzymes that have recently emerged as biological targets for anti-diabetic compound development. The validation of specific inhibitor to PTP1B and DPP-IV is required for treating diabetes. Guava leaf has been used as a folk medicine traditionally because of its hypoglycemic effect. The 1,2,4-triazole is a synthetic compound that appears in the structure of various natural products and has attracted attention due to their diverse biological activities in pharmaceutical and agrochemical fields.
The objectives of this study are to evaluating inhibitory potential of guava leaf extracts on PTP1B enzyme and the inhibition potency of synthetic 1,2,4-triazole compounds on PTP1B and DPP-IV enzymes. We have obtained water fraction of guava leaf extracts and fourteen 1,2,4-triazole compounds. We assessed the inhibitory activity associated with the water fraction of guava leaf extracts on PTP1B and their selectivity over T-cell protein tyrosine phosphatase (TCPTP) using enzymatic assays. Similarly, we tested the inhibitory activity of each triazole compounds on PTP1B and DPPIV enzymes.
Results showed that fraction 5 of guava leaf extracts has the best inhibitory activity with the IC50 values of 0.160±0.013 µg/ml and provided 2-folds selectivity over T-cell protein tyrosine phosphatase (TCPTP). Compound 4 of trizole compounds has the strongest PTP1B inhibitory activity in vitro with the IC50 values of 25 µM. Compound 4 and 12 exhibited the strongest DPP-IV inhibitory activities with the IC50 values of 10 µM and 5 µM, respectively. The results from this experiment indicated that water fraction of guava leaf extracts and synthetic 1,2,4-triazole compounds have strong potency as inhibitor of PTP1B and DPP-IV enzymes.

TABLE OF CONTENTS

ACKNOWLEDGMENT iv
ENGLISH ABSTRACT v
CHINESE ABSTRACT vii
TABLE OF CONTENTS ix
LIST OF TABLES xi
LIST OF FIGURES xii
I. CHAPTER ONE Introduction 1
1.1 Background 1
1.2 Research Objectives 2
1.3 Research Scope 2
II. CHAPTER TWO Literature Review 3
2.1 Diabetes Mellitus 3
2.2 Protein tyrosine Phosphatase 1B (PTP1B) in type 2 diabetes mellitus 4
2.3 Dipeptidyl peptidase-IV (DPP-IV) in type 2 diabetes (T2DM) 10
2.4 Guava leaf 14
2.5 1,2,4-Triazole 17
III. CHAPTER THREE Method 19
3.1 Materials and Equipments 19
3.2 Method 19
3.2.1 Preparation of guava leaf extracts 19
3.2.2 Alkaline phosphatase (AP) enzymatic activity assay 20
3.2.3 Protein tyrosine phosphatase 1b (PTP1B) enzymatic activity assay 20
3.2.4 T-cell protein tyrosine phosphatase (TCPTP) enzymatic activity assay 21
3.2.5 PTP1B inhibition screening (1, 2, 4-triazole compounds) 22
3.2.6 Dipeptidyl peptidase IV (DPP-IV) enzymatic assay 22
IV. CHAPTER FOUR Results 29
4.1 Alkaline phosphatase activity assay 29
4.2 Water fraction inhibition on protein tyrosine phosphatase 1b (PTP1B) 29
4.3 T-cell protein tyrosine phosphatase (TCPTP) inhibition by water fraction of guava leaf extracts 31
4.4 Protein tyrosine phosphatase 1b (PTP1B) inhibition by 1, 2, 4-triazole compounds 32
4.5 Dipeptidyl peptidase-IV (DPP-IV) inhibitory detection by 1,2,4-triazole compounds 34
V. CHAPTER FIVE Discussion and Conclusion 35
5.1 Discussion 35
5.1.1 Guava leaf extracts inhibitory potencies on protein tyrosine phosphatase 1b (PTP1B) 35
5.1.2 Triazole compounds inhibitory potencies on DPP-IV and PTP1B enzymes 36
5.2 Conclusion 39
REFERENCES 39


LIST OF TABLES

TABLE 2-1 Summary of hypoglycemic effects from recent studies on guava leaf extract 16
TABLE 4-1 The IC50 values of water fractions of guava leaf against PTP1B 31
TABLE 4-2 The IC50 values of water fractions of guava leaf against TCPTP 31
TABLE 4-3 The selectivity between PTP1B and TCPTP 32
TABLE 4-4 1, 2, 4-triazole compounds 32
TABLE 4-5 The IC50 values of 1,2,4-triazole compounds against PTP1B 34
TABLE 4-6 The IC50 values of 1,2,4-triazole compounds against DPP-IV 34

LIST OF FIGURES

Figure 2-1 The ribbon diagram of overall structure of the dipeptidyl peptidase-IV (DPP-IV) homodimer 5
Figure 2-2 The general catalytic mechanism for dephosphorylation of substrate by protein tyrosine phosphatase (PTPs) 6
Figure 2-3 PTP1B selectivity region and gateway residue. (a) the YRD (tyrosine, arginine, aspartic acid) motif) and (b) glycine (Gly)259 gateway residue 7
Figure 2-4 Negative regulation of the leptin and insulin metabolic signal-transduction pathways by protein tyrosine phosphatase 1B (PTP1B) 9
Figure 2-5 The ribbon diagram of overall of the dipeptidyl peptidase-IV (DPP-IV) homodimer 11
Figure 2-6 Dipeptidyl peptidase-IV (DPP-IV) inhibition physiologic action 13
Figure 2-7 Guava Fruits and Leaves. 15
Figure 2-8 Chemical structure of 1,2,4-triazole or s-triazole 17
Figure 3-1 Flow chart of guava leaf extraction and partition 23
Figure 3-2 Flow chart of alkaline phosphatase enzymatic assay 24
Figure 3-3 Flow chart of water fraction inhibition potencies on protein tyrosine phosphatase 1b (PTP1B) 25
Figure 3-4 Flow chart of water fraction inhibition potencies on T-cell protein tyrosine phosphatase (TCPTP) 26
Figure 3-5 Flow chart of PTP1B inhibition screening by 1, 2, 4- triazole compounds 27
Figure 3-6 Flow chart of DPP-IV inhibition screening by 1, 2, 4- triazole compounds 28
Figure 4-1 Lineweaver-Burk analysis of sodium vanadate inhibiton. using alkaline phosphatase (AP) 29
Figure 4-2 Lineweaver-Burk analysis of PTP1B enzymatic activity 30
Figure 4-3 Structure of fourteen 1,2,4-triazole compounds 33

REFERENCES

Aertgeerts, K., Ye, S., Tennant, M. G., Michelle, L. K, Joe, G., Bi-ching, S., Robert J. S., David R. W., G. Sridhar. 2003. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Science, 13:412–421.

Ahrén B, Winzell MS, Burkey B, Hughes TE. 2005. Beta-cell expression of a dominant-negative hepatocyte nuclear factor (HNF)-1alfa compromises the ability of DPP-4 inhibition to elicit a long-term augmentation of insulin secretion in mice. Presented at the American Diabetes Association Scientific Sessions; Abstract 1559-P.

Ajami, K., Abbott, C.A., Obradovic, M., Gysbers, V., Kahne, T., McCaughan, G.W., and Gorrell, M.D. 2003. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry 42: 694–701.

Alonso, A., Sasin, J., Bottini, N. 2004. Protein tyrosine phosphatases in the human genome. Cell 117 (6)699–711.

Andersen, J. N., Mortensen, O. H., Peters, G. H. 2001. Structural and evolutionary relationships among protein tyrosine phosphatase domains, Mol. Cell. Biol, 217117–7136.


Arima, H., Danno, G., 2002. Isolation of antimicrobial compounds from guava (Psidium guajava L.). Bioscience, Biotechnology and Biochemistry, 66, 727–1730.

Asante-Appiah, E. 1997. The YRD motif is a major determinant of substrate and inhibitor specificity in T-cell protein tyrosine phosphatase. J. Biol. Chem. 276.

Atkinson, M and Maclaren, N. The pathogenesis of insulin-dependent diabetes mellitus. 1994 N Eng J Med; 331, 1428-1436.

Bagal, L. I., Pevzner, M. S., and V. A. Lopyvrev. 1966. Basicity and structure of 1,2,4-triazole derivates. Khimiya geterotsiklicheskikh soedinenii, Vol. 2, No. 3, pp. 440-442.

Bahare, R. S., Gupta, G., Malik, S., and Sharma, N. 2011. New emerging targets for type-2 diabetes. International Journal of PharmTech Research: Vol. 3, No.2, pp 809-818.

Barnett, A. 2006. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int. J. Clin. Pract. 60 (11): 1454–70.

Beckerman, M. 2005. Molecular and cellular signaling. Biological and medical physics. Biomedical engineering. Spinger. AIP Press.

Buerkel, L. and Lane, E. 2006. Protein tyrosine phosphatase 1B. Mendeley.

Brahmachari, B. 2011. Bio-flavonoids with promising antidiabetic potentials: A critical survey. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry, 2011: 187-212.

Cheng, F. C., Shen, S. C., and James, S. B. 2009. Effect of Guava (Psidium guajava L.) Leaf Extract on Glucose Uptake in Rat Hepatocytes. Journal of food science, Vol. 74, No. 5.
Chen, X. 2006. Biochemical Properties of Recombinant Prolyl Dipeptidases DPP-IV and DPP8. Advances in Experimental Medicine and Biology, 2006, Volume 575, Topic I, 27-32.
Chyan, Y. J., and Chuang, L. M. 2007. Dipeptidyl peptidase-iv inhibitors: an evolving treatment for type 2 diabetes from the incretin concept. Recent patents on endocrine, metabolic & immune drug discovery, 1, 15-24.

Combs, AP. 2010. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J. Med. Chem., 53, 2333–2344.

Conarello SL, Li Z, Ronan J, et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Nat Acad Sci USA 2003; 100: 6825-30.

Conway, P., 2002. Tree Medicine: A Comprehensive Guide to the Healing Power of Over 170 Trees. 2001. Judy Piatkus (Publishers) Ltd, pp. 2173–2177.

DeFronzo, R. A., Bonadonna, R. C., and Ferannini, E. 1992. Pathogenesis of NIDDM: a balance overview. Diabeters Care. 15; 318-368.

Deguchi, Y., and Miyazaki, K. 2010. Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract. Nutrition & Metabolism. 7;9.

Dipl-Pharm, S., and Zierath, J. R. 2004. Tackling the insulin-signalling cascade. Canadian journal of diabetes, 29(3):239-245.

Drucker, D. J. and Nauck, M. A. 2006. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. New drug class, 368;1696-705.
Dube, N., and Tremblay, M. L. 2005. Interview of the small tyrosine phosphatases TC-PTP abd PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochimica et biophysica acta. 1754;108-117.

Dungan, K. M. D.,and B. Buse, B. M. D. 2005. Glucagon-Like Peptide 1–Based Therapies for Type 2 Diabetes: A Focus on Exenatide. Feature article. Clinical Diabetes: Vol. 23, No. 2.

Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., Normandin, D., Cheng, A., HimmsHagen, J., Chan, C. C., Ramachandran, C., Gresser, M. J., Tremblay M. L., Kennedy, B. P. 1999. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 283: 1544–1548.

Helmreich, E. J. M. 2001. The biochemistry of cell signaling. Oxford university press.


Isloor, A. M., Kalluraya, B., Rao, M., Rahiman, A. M. 2009. Regioselective reaction: Synthesis, characterization and pharmacological studies of some new Mannich bases derived from 1,2,4-triazoles. European Journal of Medicinal Chemistry. Vol. 44, Issue 9, 3784–3787.
Johnson, T. O., Ermolieff, J. and Michael, R. J. 2002. Protein tyrosine phosphatase 1b inhibitors for diabetes. Nature publishing group:Vol 1.

Kirby, M., Yu, D. M. T., O’connor, S. P., and Mark, D. G. 2010. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clinical Science 118, 31–41.

Kalluraya B, Isloor AM, Shenoy S (2001) Synthesis and biological activity of 6-substituted-3-[4-(3-substituted pyrazolidene) hydrazino-4-thiazolyl] coumarins. Indian J Heterocycl Chem 11:159–162.

Khalil, N. S. A. M. 2010. Efficient synthesis of novel 1,2,4-triazole fused acyclic and 21-28 membered macrocyclic and/or lariat macrocyclic oxaazathia crown compounds with potential antimicrobial activity. European journal of medicinal chemistry 4 5765-5277.

Khan, B. B. and Flier, J. S. 2000. Obesity and insulin resistance. J. Clin. Invest;106(4):473-481.

Killion, K.H., 2000. The Review of Natural Products, third ed. Facts and Comparison, USA, pp. 250–251.

Kushner, P., and Gorrell, M. 2010. DPP-4 Inhibitors in Type 2 Diabetes: Importance of Selective Enzyme Inhibition and Implications for Clinical Use. Journal of family practice: Vol. 59, No. 2.
Liu, Xiaowen. 2008. Interaction between enteral nutrients and glucagon like peptide-2 in intestinal adaptation in parenterally-fed rats. Dissertation, the university of Wisconsin, Madison.

Liu, G., Xin, Z., Pei, Z., Hajduk, P. J., Abad- Zapatero, C., Hutchins, C. W., Zhao, H., Lubben, T. H., Ballaron, S. J., Haasch, D. L., Kaszubska, W., Rondinone, C. M., Trevillyan, J. M., Jirousek, M. R. 2003. Fragment Screening and Assembly: A Highly Efficient Approach to a Selective and Cell Active Protein Tyrosine Phosphatase 1B Inhibitor J. Med. Chem. 46, 4232

Lucas, E., Olorunnisola, A., Adewole, N., 2006. Preliminary evaluation of guava (Psidium guajava) tree truss fabrication in Nigeria. Agriculture Engineering International 3, 10–20.

Marguet D, Baggio L, Kobayashi T, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Nat Acad Sci USA 2000; 97: 6874-79.

Mayfield, J. 1998. Diagnosis and classification of diabetes mellitus: new criteria. Am fam physician, 58 (6): 1355-1362.


Meintlein, R. 1999. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul pept 85: 9–24.

Moretto, A. F., Kirincich, S. J., Xu, W. X., Smith, M. J., Wan, Z.-K., Wilson, D. P., Follows, B. C., Binnun, E., Joseph-McCarthy, D., Foreman, K., Erbe, D. V., Zhang, Y. L., Tam, S. K., Tam, S. Y., Lee, J. 2005. Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. 2006, 14, 2162;

Morrison, C. D., White, C. L., Wang, Z. 2007. Increased hypothalamic PTP1B contributes to leptin resistance with age. Endocrinology 148, 12729-12804.


Na, M. K., Oh, W. K., Young, H. K., Xing, F. C., SoHee, K., Bo, Y. K., and Jon, S. A. 2006. Inhibition of protein tyrosine phosphatase 1b by diterpenoids isolated from Acanthophanax koreanum. Bioorg. Med. Chem. Lett. 16:3061-3064.

Neer, E.J. and Smith, T.F. 1996. G protein heterodimers: New structures propel new questions. Cell, 84: 175–178.

Oh, W. K., Lee, C. H., Lee, M. S., Eun, Y. B., Cheon, B. S., Hyuncheol, O., Bo, Y. K., Jong, S. A. 2004. Antidiabetic effects of extracts from Psidium guajava. Journal of ethnopharmacology 96 411-415.

Ojewole, J.A., 2006. Antiinflamatory and analgesic effects of Psidium guajava Linn (Myrtaceae) leaf aqueous extract in rats and mice. Methods and Findings in Experimental and Clinical Pharmacology 28, 441–446.

Oswal, A., and Yeo, G. 2010. Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity. Obesity,18 2, 221–229.

Pegklidou, K., Koukoulitsa, C., Nicolaou, I., Vassilis J. D. 2010. Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorganic & Medicinal Chemistry, 18: 2107–2114

Peters, G. H. et al. 2000. Residue 259 is a key determinant of substrate specificity of protein tyrosine phosphatase 1B and α. J. Biol. Chem. 275, 18201-18209.

Potts, K. T. 1960. The chemistry of 1,2,4-triazoles. Chemical Reviews. 61 (2): 87–127.

Prabhakar, P. K., and Doble, M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. 2008. Current diabetes reviews, 4, 291-308.

Reimer, M. K., Holst, J. J., and Åhren, B. 2002. Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur J Endocrinol 146:717–72

Shah, P. 1991. Etiology and pathogenesis of non-insulin dependent diabetes mellitus (NIDDM). intnl. j. diab. dev. countries, vol. 11

Shen, S. C., Cheng, F. C., and Ning, J. W. 2008. Effect of Guava (Psidium guajava Linn.) Leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytother. Res. 22, 1458–1464.

Wiwanitkit, Viroj. 2011. Hyperglycemia in poor controlled diabetes from crude tamarind herbal pill: a case study. Asian pacific journal of tropical biomedicine: 79-80.

Vargas, A.D., Soto, H.M., Gonzalez, H.V.A., Engleman, E.M., Martinez, G.A. 2006. Kinetics of accumulation and distribution of flavonoids in guava (Psidium guajava). Agrociencia 40, 109–115.

Wang, B., Liu, H.C., Ju, C.Y., 2005. Study on the hypoglycemic activity of different extracts of wild Psidium guajava leaves in Panzhihua area. Sichuan Da Xue Xue Bao Yi Xue Ban 36, 858–861.

Wild S, Roglic G, Green A, Sicree R, King H. 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047–1053.

Wu, J., Chen, Y., Shi, Y., and Wei, G. 2009. Dipeptidyl peptidase IV(DPP IV): a novel emerging target for the treatment of type 2 diabetes. Journal of Nanjing Medical University 23(4):228-235

Ye, D., Zhang, Y., Wang, F., Mingfang, Z., Xu, Z., Xiaomin, L., Xu, S, Hualiang, J., Hong, L. Novel thiophene derivatives as PTP1B inhibitors with selectivity and cellular activity. Bioorganic & Medicinal Chemistry,18;1773–1782

Zabolotny, J. M. et al. 2002. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2, 489-495.

Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I., Vilella, D., Diez, M.T., Pelaez, F., Ruby, C., Kendall, R.L., Mao, X., Griffin, P., Calaycay, J., Zierath, J.R., Heck, J.V., Smith, R.G., Moller, D.E., 1999. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284, 974–977.

Zhang, S. and Zhang, Z. Y. 2007. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discovery Today. Vol.12, No.9/10.

Zakaria, M., Mohd, M.A., 1994. Traditional Malay medicinal plants. Penerbit Fajar Bakti Sudan Berhard;129–132.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top