跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余尚恩
研究生(外文):Shang-En Yu
論文名稱:模糊選擇權評價模型
論文名稱(外文):Fuzzy Option Pricing Model
指導教授:黃焜煌黃焜煌引用關係
指導教授(外文):Kun-Huang Huarng
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:財務金融系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:39
外文關鍵詞:fuzzy setoption pricingwarranttree model.
相關次數:
  • 被引用被引用:4
  • 點閱點閱:494
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
Option is a tool that investors often use to arbitrage or hedge. However, either Black-Scholes model or CRR model can only provide a theoretical reference value. This paper applies fuzzy set to the CRR model. It is expected that the fuzzy volatility, instead of the crisp one as in conventional CRR model, can provide reasonable ranges and corresponding memberships of option prices. As a result, investors with various risk preferences can interpret the optimal differently.
Contents

1.Introduction•••••••••••••••••••••••1
2. Literature Review•••••••••••••••••••••2
3. Research Methods•••••••••••••••••••••3
3.1 Fuzzy Theory••••••••••••••••••••••3
3.1.1 Triangular Fuzzy Number••••••••••••••••3
3.1.2 Fuzzy Relation•••••••••••••••••••••3
3.2 Option Pricing Model•••••••••••••••••••4
3.3 The Types of Volatility••••••••••••••••••5
4. Fuzzy Binomial Tree Option Pricing Model•••••••••••9
4.1 One-Step Fuzzy Period Pricing Model••••••••••••9
4.2 Inference of Fuzzy Binomial Tree Option Pricing Model•••••11
4.3 Two-Step Fuzzy Pricing Model•••••••••••••••13
4.4 N-Step Fuzzy Pricing Model •••••••••••••••14
5. Experimental Analysis ••••••••••••••••••28
5.1 Data Description and Characteristics•••••••••••••28
5.2 The Fuzzy Tree of Stock Price•••••••••••••••29
5.3 The Fuzzy Tree of Option Price ••••••••••••••32
5.4 Sensitivity Analysis•••••••••••••••••••34
6. Conclusions ••••••••••••••••••••••35
6.1 Summary •••••••••••••••••••••••35
6.2 Future work ••••••••••••••••••••••36

References••••••••••••••••••••••37
References
1. Amin, Kaushik I. (1993), Jump Diffusion Option Valuation in Discrete Time, Journal of Finance, Vol.48, No.5, pp.1833-1863.
2. Black, F. and M. Scholes (1973) The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, pp.399-417.
3. Black, F. (1975) Fact and Fantasy in the Use of Option, Financial Analysts Journal, Vol.31, pp.36-41 and pp.61-72.
4. Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics 31,307-327
5. Cox, John C. (1975) Notes on Option Pricing I: Constant Elasticity of Variance Diffusion, Working paper, Stanford University.
6. Cox, John C., Stephen A. Ross, and Mark Rubinstein (1979) Option Pricing: A Simplified Approach, Journal of Financial Economics, Vol.7, pp.229-263.
7. Garman, M. B., and M. J. Klass (1980) On the Estimation of Security Price Volatilities from Historical Data, Journal of Business, 53(1) pp.67-78
8. Hauser, S., and B.Lauterbach. (1997) The Relative Performance of Five Alternative Warrant Pricing Models, Financial Analysis Journal, Forthcoming.
9. Hull, J. (1998) Introduction to Futures and Options Markets, Prentice Hall International Inc.
10. Hull, J. and A. White. (1987). The Pricing of Options on Assets with Stochastic Volatilities, Journal of Finance. Vol.42. pp.281-300.
11. Lauterbach, B., and P. Schultz. (1990) Pricing Warrants: An Empirical Study of the Black-Scholes Model and its Alternatives, Journal of Finance, pp.1181-1209
12. Merton, R.C. (1976) Option Pricing when Underlying Stock Returns Are Discontinuous, Journal of Financial Economics, Vol.3, pp.125-144.
13. Merville, Larry J., and Dan R. Pieptea (1989) Stock-Price Volatility, Mean-Reverting Diffusion, and Noise. Journal of Financial Economics, Vol.24, No. 1, pp.193-214.
14. Parkinson, M. (1980) The Extreme Value Method for Estimating the Variance of the Rate of Return, Journal of Business, 53(1), pp.61-65
15. Scott, L. (1987) Option Pricing When Variance Changes Randomly: Theory, Estimation and An Application, Journal of Financial and Quantitative Analysis. Vol.4. pp.727-752.
16. Wiggins, J.B. (1987). Option Values under Stochastic Volatility: Theory and Empirical Evidence, Journal of Financial Economics, Vol.19. pp.351-372
17. Zadeh, L.A. (1965) Fuzzy Sets, Information and Control, 8, pp.338-353.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top