[1]張俊偉,“63Sn/37Pb銲點試片在循環比例位移路徑下疲勞初始壽命預估-含循環損傷內涵時間黏塑性理論之應用,碩士論文-國立成功大學工程科學系,2008。
[2]林泰廷,“循環比例位移路徑下Sn/3.5Ag/0.75Cu BGA銲點試片疲勞初始壽命預估-含循環損傷內涵時間黏塑性理論之應用,碩士論文-國立成功大學工程科學系,2009。[3]Park, T. S. and Lee, S. B., “Isothermal Low Cycle Fatigue Test of Sn/3.5Ag/0.75Cu and 63Sn/37Pb Solder Joint under Mixed-Mode Loading Cases, Electronic Components and Technology Conference, pp.979-984, 2002.
[4]Park, T. S. and Lee, S. B., “Low Cycle Fatigue Testing of Ball Grid Array Solder Joints under Mixed-Mode Loading Conditions, ASME Journal of Electronic Packing., Vol. 127, pp. 237-244, 2005.
[5]Kachanov, L. M., “Introduction to Continuum Damage mechanics , Kluwer Academic Publishers, 1986.
[6]Brown, M. W. and Miller, K. J., “A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions, Proceedings of the Institution of Mechanical Engineers, Vol. 187, No. 65, pp. 745-755, 1973.
[7]Stolkarts, V., Keer, L.M. and Fine, M.E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder, Journal of Mechanics and Physics of Solid, Vol.47, pp.2451-2468, 1999.
[8]Park, T. S., and Lee, S. B., “Mechanical Fatigue Tests of Solder Joint under Mixed-Mode Loading Cases, 2001 Int’1 Symposium on Electronic Materials and Packaging, (C) 2001 IEEE, pp.438-443.
[9]Park, T.S., and Lee, S.B., “Cyclic Stress-Strain Measurement Tests of Sn 3.5Ag 0.75Cu Solder Joint, 2002 Int’1 Symposium on Electronic Materials and Packaging, (C) 2002 IEEE,pp.317-323.
[10]Lee, C. F. and Chen, Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Soloder Alloy, Journal of Mechanics, Vol.23,pp.433-445,2007.
[11]李泰廣,“Sn/3.5Ag/0.75Cu銲點試片在循環比例位移路徑下含循環損傷內涵時間黏塑性理論之應用,碩士論文-國立成功大學工程科學系,2007。[12]Lee, C. F. and Shieh, T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy, Journal of Mechanics, Vol.22, No.3, pp.181-191, 2006.
[13]Lee, C. F. and Lee, Z. H., “Predicting Fatigue Initiation Life of Sn/3.8Ag/0.7Cu Solder Using Endochronic Cyclic Damage-Coupled Viscoplastic Theory, Journal of Mechanics, Vol. 24, No.4, pp.369-377, 2008.
[14]Wei, Y., Lau, K. J., Vianco, P., and Fang, H. E., “Behavior of Lead-Free Solder under Thermomechanical Loading, ASME Journal of Electronic Packing., Vol. 126, pp. 367-373, 2004.
[15]Shang, J. K., Zeng, Q. L., Zhang, L. and Zhu, Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys, Journal of Materials Science : Material in Electron., Vol. 18(1-3), pp. 211-227, 2007.
[16]Zeng, Q., Wang, Z., Xian, A., and Shang, J., “Low Cycle Fatigue Behavior of Sn-3.8Ag-0.7Cu Lead-Free Solder, Chinese Journal of Materials Research., Vol. 18, pp. 11-17, 2004.
[17]Socie, D.F., Waill, L. A., and Dittmer, D. F., “Biaxial Fatigue of Inconel 718 Including Mean Stress Effects, Multiaxial Fatigue, ASTM STP 853, Miller, K. J. and Brown, M. W., Eds., American Society for Testing and Materials, Philadelphia, pp. 463-481, 1985.
[18]Lee, K. O., Yu, J., Park, T. S. and Lee, S. B., “Low Cycle Fatigue Characteristics of Sn-Based Solder Joints, Journal of Electronic Materials , Vol. 33, No.4, pp. 249-257, 2004.
[19]林紘毅,“Sn/3.5Ag/0.75Cu銲錫受循環混合負載下含疲勞損傷之內涵時間黏塑性理論之研究,碩士論文-國立成功大學工程科學系,2006。[20]Lohr, R. D. and Ellison, E. G., “Biaxial High-Strain Fatigue Testing of 1Cr-Mo-V Steel, Fatigue of Engineering Materials and Structures, Vol.3,pp.1-17,1980.
[21]Kandil, F. A., Brown, M. W., and Miller, K. J., “Biaxial Low-Cycle Fatigue Fracture of 316 Stainless Steel of Evaluated Temperatures, pp. 203-210 in Mechanical Behavior and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, The Metals Society, London, 1982.