跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許逸隆
研究生(外文):Yi-Lung Hsu
論文名稱:馬達-肘節機構的節能軌跡規劃
論文名稱(外文):Energy-Saving Trajectory Planning for a Motor-Toggle Mechanism
指導教授:馮榮豐馮榮豐引用關係黃明賢黃明賢引用關係
指導教授(外文):Fung, R. F.Huang, M. S.
學位類別:博士
校院名稱:國立高雄第一科技大學
系所名稱:工學院工程科技博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:86
中文關鍵詞:輸入絕對值電能實數型基因演算法兩階段式鑑別方法節能軌跡規劃
外文關鍵詞:Two-stage identification methodReal-coded genetic algorithmInput absolute electrical energyEnergy-saving trajectory planning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是針對馬達-肘節機構的節能運動軌跡規劃方法進行研究。首先在系統建模方面分別是對馬達-肘節機構系統建立電氣方程式和機械方程式,並且考慮真實射出成型機在鎖模過程是具有衝擊力的,因而建立其衝擊力模型來加以描述馬達-肘節機構的鎖模過程。本文在系統鑑別方面是使用兩階段式鑑別方法,其鑑別過程乃是使用實數型基因演算法(RGA)來對系統進行兩階段式鑑別,分別是對鎖模前和鎖模後,設計兩種不同的適應函數來對系統進行參數鑑別,目的是在提高參數鑑別之精度及節省鑑別時間,經由數值模擬與實驗結果已得驗證。在本文中,我們主要的研究工作是在設計點對點(PTP)的節能運動軌跡,經由高階多項式的定義,使其滿足在最初和最後時間所設定之拘束條件(位移,速度,加速度和急跳度)而產生之最節能的運動軌跡,文中主要是使用永磁同步伺服馬達(PMSM)-肘節機構之機電系統的電氣方程式和機械方程式,來設計輸入絕對值電能(IAEE)的高階多項式運動軌跡,並使用實數型基因演算法(RGA)來確定高階多項式的係數值,以達到節能的目的,然而,高階多項式的階數是規劃節能運動軌跡的問題之一。經由數值模擬與實驗結果驗證,馬達-肘節機構機電系統的單次運動,在所提出設計的30階多項式速度運動軌跡比傳統的梯形速度運動軌跡,可節省12 %之能量輸出。本文經由收斂分析也驗證使用24階多項式,即可得到最節能之運動軌跡。本文主要是提出最小輸入絕對值電能節能軌跡的規劃方法,其方法可以應用到任何一種需要節能的點對點運動軌跡之機電系統。
The purpose of this study was to find an energy-saving trajectory for a motor-toggle mechanism. The effects of clamping forces on a motor-toggle mechanism are dynamically modeled in this study. The clamping unit used was a simple spring-damper model. Based on a real application, an impulse model associated with clamping effectiveness had to be considered for the process of clamping. A two-stage identification method also had to be developed to validate the dynamic responses of the unclamping and clamping motions. The two-stage identification method for the system parameters was carried out through a real-coded genetic algorithm (RGA) with two different fitness functions. The purpose was to improve the accuracy of parameter identification and identify the amount of saved time, both of which were obtained by the results of numerical simulations and experimentation. The point-to-point (PTP) trajectory is described by a high-degree polynomial, which satisfies the end conditions of displacement, velocity, acceleration and jerk at the initial and final times. Planning an energy-saving trajectory through the use of a high-degree polynomial for a toggle mechanism driven by a permanent magnet synchronous motor (PMSM) is quite useful. However, it was essential to find a sufficient degree for the polynomial that would produce an energy-saving trajectory. The real-coded genetic algorithm (RGA) method was employed to determine the coefficients of the polynomial, and its fitness function was the inverse of various input energy values. Comparisons of the results of the numerical simulations and experiments for polynomials of differing degrees during the whole operation of motion were analyzed. Finally, it was found that the minimum input absolute electrical energy (IAEE) value was produced when the highest-degree polynomial was used. From the percentage of relative error with respect to the input absolute electrical energy value of a trapezoidal trajectory, it was found that the percentage of relative error was -12% when the 30th-degree polynomial trajectory was used with a sufficient minimum input energy value for a single movement of the motor-toggle mechanism system. From convergent analysis, it was found that the 24th-degree polynomial was efficient in designing the energy-saving trajectory. The proposed methodology can be applied to any mechatronic system which requires the design of a minimum-energy point-to-point trajectory.
摘 要 i
Abstract ii
Acknowledgements iv
Contents v
Figure Captions viii
Table Captions xi
Nomenclature xii
Greek Letters xvi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Content organization 6
Chapter 2 Mathematical Model 8
2.1 PMSM drive system 9
2.2 Impulse model 14
2.3 Motor-toggle mechanism model 15
2.4 Reduced formulation of differential equations of motion 19
Chapter 3 System Identification 22
3.1 Two-stage fitness functions 22
3.2 RGA 25
3.3 Swept-frequency sinusoid waveform 27
Chapter 4 Trajectory Planning 28
4.1 Trapezoidal trajectory planning 28
4.2 Polynomial trajectory planning 30
4.3 Input absolute electrical energy (IAEE) 32
4.4 Increasing function definition 35
4.5 RGA of trajectory planning 36
4.6 Energy-saving trajectory planning algorithm 37
Chapter 5 Numerical Simulations and Experiments 39
5.1 Experimental setup 39
5.2 Results of system identification 40
5.3 Results of minimum IAEE 47
5.4 Results of convergent analysis 52
5.5 Results of quadratic and minimum IAEE values 53
5.6 Comparison of trapezoidal and polynomial trajectories 57
5.7 Discussion 63
Chapter 6 Conclusion 64
References 65
Appendix A Dynamic Formulations for the Motor-Toggle Mechanism with a Clamping Unit 71
Appendix B Details of Equation (18) 84
Appendix C Details of Equation (22) 86
[1] Johannaber, F., 1994, Injection Molding Machines, Hanser, New York.
[2]Lin, W. Y. and Hsiao, K. M., 2003, “Investigation of the Friction Effect at Pin Joints for the Five-Point Double-Toggle Clamping Mechanisms of Injection Molding Machines,” International Journal of Mechanical Sciences, Vol. 45, No. 11, pp. 1913–1927, DOI: 10.1016/j.ijmecsci.2003.10.010
[3]Wai, R. J., Lin, C. H. and Lin, F. J., 2001, “Adaptive Fuzzy Neural Network Control for Motor-Toggle Servomechanism,” Mechatronics, Vol. 11, No. 1, pp. 95–117.
[4] Lin, F. J. and Wai, R. J., 2002, “Hybrid Computed Torque Controlled Motor-Toggle Servomechanism Using Fuzzy Neural Network Uncertainty Observer,” Neurocomputing, Vol. 48, No. 1– 4, pp. 403–422.
[5] Wai, R. J., 2003, “Robust Fuzzy Neural Network Control for Nonlinear Motor-Toggle Servomechanism,” Fuzzy Sets and Systems, Vol. 139, No. 1, pp. 185–208.
[6] Lin, F. J., Fung, R. F. and Wang, Y. C., 1997, “Sliding Mode and Fuzzy Control of Toggle Mechanism Using PM Synchronous Servomotor Drive,” IEE Proceedings Control Theory and Applications, Vol. 144, No. 5, pp. 393–402.
[7] Fung, R. F. and Yang, R. T., 1998, “Application of VSC in Position Control of a Nonlinear Electrohydraulic Servo System”, Computers & Structures, Vol. 66, No. 4, pp. 365–372.
[8] Fung, R. F. and Yang, R. T., 2001, “Motion Control of an Electrohydraulic Actuated Toggle Mechanism,” Mechatronics, Vol. 11, No. 7, pp. 939–946.
[9] Fung, R. F., Wu, J. W. and Chen, D. S., 2001, “A Variable Structure Control Toggle Mechanism Driven by Linear Synchronous Motor with Joint Coulomb Friction,” Journal of Sound and Vibration, Vol. 247, No. 4, pp. 741–753.
[10]Cho, S. H. and Fung, R. F., 2014, “Virtual Design of a Motor-Toggle Servomechanism with Sliding Mode-Combined PID Control,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp. 1–10, DOI: 10.1177/0954406214531944
[11]Fung, R. F. and Cheng, Y. H., 2014, “Trajectory Planning Based on Minimum Absolute Input Energy for an LCD Glass-Handling Robot,” Applied Mathematical Modelling, Vol. 38, No. 11–12, pp. 2837–2847.
[12]Chen, K. Y., Huang, M. S. and Fung, R. F., 2013, “Minimum Input Energy Trajectory Design of the Mechatronic Elevator System,” Advanced Materials Research, Vol. 740, pp. 68–73, DOI: 10.4028/www.scientific.net/AMR.740.68
[13]Chen, K. Y., Huang, M. S. and Fung, R. F., 2013, “Adaptive Minimum-Energy Tracking Control for the Mechatronic Elevator System,” IEEE Transactions on Control Systems Technology, Vol. PP, No. 99, pp. 1–10, DOI: 10.1109/TCST.2013.2278408
[14]Oyetunji, A., 2010, “Development of Small Injection Molding Machine for Forming Small Plastic Articles for Small-Scale Industries,” Journal of Engineering Science and Technology, Vol. 5, No. 1, pp. 17–29.
[15] Sun, S. H., 2004, “Optimum Topology Design for the Stationary Platen of a Plastic Injection Machine,” Computers in Industry, Vol. 55, No. 2, pp. 147–158.
[16]Chakherlou, T. N., Abazadeh, B. and Vogwell, J., 2009, “The Effect of Bolt Clamping Force on the Fracture Strength and the Stress Intensity Factor of a Plate Containing a Fastener Hole with Edge Cracks,” Engineering Failure Analysis, Vol. 16, No. 1, pp. 242–253.
[17]Huang, M. S., Lin, T. Y. and Fung, R. F., 2011, “Key Design Parameters and Optimal Design of a Five-Point Double-Toggle Clamping Mechanism,” Applied Mathematical Modelling, Vol. 35, No. 9, pp. 4304–4320.
[18] Martin, G. H., 1982, Kinematics and Dynamics of Machines, McGraw-Hill, New York.
[19] Wilson, C. E., Sadler, J. P. and Michels, W. J., 1983, Kinematics and Dynamics of Machinery, Harper and Row.
[20] Fung, R. F., Hwang, C. C., Huang, C. S. and Chen, W. P., 1997, “Inverse Dynamics of a Toggle Mechanism,” Computers & Structures, Vol. 63, No. 1, pp. 91– 99.
[21] Huang, M. S., Chen, K. Y. and Fung, R. F., 2009, “Numerical and Experimental Identifications of a Motor-Toggle Mechanism,” Applied Mathematical Modelling, Vol. 33, No. 5, pp. 2502–2517.
[22] Wright, A. H., 1991, “Genetic Algorithms for Real Parameter Optimization, First Workshop on the Foundations of Genetic Algorithms and Classier Systems,” Morgan Kaufmann Publishers, Los Altos A, pp. 205–218.
[23] Fung, R. F. and Lin, W. C., 2010, “System Identification and Contour Tracking of a Plane-Type 3-DOF Precision Positioning Table,” IEEE Transactions on Control Systems Technology, Vol. 18, No. 1, pp. 22–34.
[24] Valarmathi, K., Devaraj, D. and Radhakrishnan, T. K., 2009, “Real-Coded Genetic Algorithm for System Identification and Controller Tuning,” Applied Mathematical Modelling, Vol. 33, No. 8, pp. 3392–3401.
[25]Mohideen, K. A., Saravanakumar, G., Valarmathi, K., Devaraj, D. and Radhakrishnan, T. K., 2013, “Real-Coded Genetic Algorithm for System Identification and Tuning of a Modified Model Reference Adaptive Controller for a Hybrid Tank System,” Applied Mathematical Modelling, Vol. 37, No. 6, pp. 3829–3847.
[26]Tohsato, Y., Ikuta, K., Shionoya, A., Mazaki, Y. and Ito, M., 2013, “Parameter Optimization and Sensitivity Analysis for Large Kinetic Models Using a Real-Coded Genetic Algorithm,” Gene, Vol. 518, No. 1, pp. 84–90.
[27]Fung, R. F., 1996, “Dynamic Analysis of the Flexible Connecting Rod of Slider-Crank Mechanism,” Transactions of the ASME, Journal of Vibration and Acoustics, Vol. 118, No. 4, pp. 687–689.
[28]Fung, R. F. and Chen, K. W., 1998, “Dynamic Analysis and Vibration Control of a Flexible Slider-Crank Mechanism Using PM Synchronous Servo Motor Drive,” Journal of Sound and Vibration, Vol. 214, No. 4, pp. 605–637.
[29]Lin, F. J., Fung, R .F. and Wai, R. J., 1998, “Comparison of Sliding Mode and Fuzzy Neural Network Control for Motor-Toggle Servomechanism,” IEEE/ASME Transactions on Mechatronics, Vol. 3, No. 4, pp. 302–318.
[30] Chuang, C. W., Huang, M. S., Chen, K. Y. and Fung, R. F., 2008, “Adaptive Vision-Based Control of a Motor-Toggle Mechanism: Simulations and Experiments,” Journal of Sound and Vibration, Vol. 312, No. 4–5, pp. 848–861.
[31]Fung, R. F. and Chang, C. F., 2009, “Force/Motion Sliding Mode Control of Three Typical Mechanisms,” Asian Journal of Control, Vol. 11, No. 2, pp. 196–210.
[32] Park, J. S., 1996, “Motion Profile Planning of Repetitive Point-to-Point Control for Maximum Energy Conversion Efficiency Under Acceleration Conditions,” Mechatronics, Vol. 6, No. 6, pp. 649–663.
[33] Pu, J., Weston, R. H. and Moore, P. R., 1992, “Digital Motion Control and Profile Planning for Pneumatic Servos,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 114, No. 4, pp. 634–640. DOI: 10.1115/1.2897735
[34]Gasparetto, A. and Zanotto, V., 2007, “A New Method for Smooth Trajectory Planning of Robot Manipulators,” Mechanism and Machine Theory, Vol. 42, No. 4, pp. 455–471.
[35] Biagiotti, L. and Melchiorri, C., 2008, Trajectory Planning for Automatic Machines and Robots, Springer-Verlag, Berlin Heidelberg, Germany.
[36] Boryga, M. and Grabos, A., 2009, “Planning of Manipulator Motion Trajectory with High-Degree Polynomials Use,” Mechanism and Machine Theory, Vol. 44, No. 7, pp. 1400–1419.
[37] Aggarwal, R., Sharan, A. M. and Balasubramanian, R., 2004, “Optimal Trajectory Control of Robotic Manipulators: Online Use of Artificial Neural Network Method in Manufacturing Processes,” Advances in Vibration Engineering, Vol. 3, No. 1, pp. 44–62.
[38] Man, K. F., Tang, K. S. and Kwong, S., 1996, “Genetic Algorithms: Concepts and Applications,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 5, pp. 519–534.
[39] Tian, L. and Collins, C., 2004, “An Effective Robot Trajectory Planning Method Using a Genetic Algorithm,” Mechatronics, Vol. 14, No. 5, pp. 455–470.
[40]Hsu, Y. L., Huang, M. S. and Fung, R. F., 2009, “Adaptive Motion Tracking Control of a Toggle Mechanism for the Electric Injection Molding Machines,” 3rd International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN 2009), Station Hotel Kokura, Kitakyushu, Japan, November 11–13.
[41] Hsu, Y. L., Huang, M. S. and Fung, R. F., 2010, “Adaptive Tracking Control of a Toggle Mechanism for the Electric Injection Molding Machines,” The 29th Chinese Control Conference (CCC 2010), Beijing, China, July 29–31.
[42]Hsu, Y. L., Huang, M. S. and Fung, R. F., 2012, “Minimum-Absolute-Energy Trajectory Planning for a Toggle Mechanism Driven by a PMSM,” International Conference on System Science and Engineering (ICSSE 2012), Dalian, China, June 30 – July 2.
[43] Hsu, Y. L., Huang M. S. and Fung, R. F., 2012, “Trajectory Planning for an Electric Injection Molding Machine Driven by a PMSM,” Conference on Precision Machinery and Manufacturing Technology (PMMT 2012), Kenting, Taiwan, May 22–23.
[44] Hsu, Y. L., Huang, M. S. and Fung, R. F., 2012, “The Minimum-Absolute-Energy Trajectory Planning of a Motor-Toggle Mechanism,” The 5th International Conference on Positioning Technology (ICPT 2012), Kaohsiung, Taiwan, November 14–16.
[45]Hsu, Y. L., Huang, M. S. and Fung, R. F., 2013, “Energy-Saving Trajectory Planning for a Toggle Mechanism Driven by a PMSM”, Proceedings of the 6th IFAC Symposium on Mechatronic Systems (IFAC 2013) FrCT2-02, Zhejiang University, Hangzhou, China, April 10–12.
[46]Hsu, Y. L., Huang, M. S. and Fung, R. F., 2014, “System Identification of a Motor-Toggle Mechanism with Clamping Effect,” The 3rd International Conference on Engineering and Technology Innovation (ICETI 2014), Kenting, Taiwan, November 1–2.
[47] Hsu, Y. L., Huang, M. S. and Fung, R. F., 2014, “Adaptive Tracking Control of a Motor-Toggle Mechanism with Clamping Effect,” Proceedings of 6th International Conference on Positioning Technology (ICPT 2014), Kitakyushu, Japan, November 18–21.
[48]Huang, M. S., Hsu, Y. L. and Fung, R. F., 2012, “Minimum-Energy Point-to-Point Trajectory Planning for a Motor-Toggle Servomechanism,” IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 2, pp. 337–344.
[49]Hsu, Y. L., Huang, M. S. and Fung, R. F., 2014, “Energy-Saving Trajectory Planning for a Toggle Mechanism Driven by a PMSM,” Mechatronics, Vol. 24, No. 1, pp. 23–31.
[50]Hsu, Y. L., Huang, M. S. and Fung, R. F., 2015, “Convergent Analysis of an Energy-Saving Trajectory for a Motor-Toggle System,” Journal of Vibration Engineering and Technologies, Vol. 3, No. 1, pp. 95–112.
[51]Khulief, Y. A. and Shabana, A. A., 1987, “A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems,” Mechanism and Machine Theory, Vol. 22, No. 3, pp. 213–224.
[52]Fung, R. F., Hsu, Y. L. and Huang, M. S., 2009, “System Identifications of a Dual-Stage XY Precision Positioning Table,” Precision Engineering, Vol. 33, No. 1, pp. 71–80.
[53]Haupt, R. L. and Haupt, S. E., 2004, Practical Genetic Algorithms, 2nd Edition, John Wiley & Sons, New Jersey.
[54]Fung, R. F., Kung, Y. S. and Wu, G. C., 2010, “Dynamic Analysis and System Identification of an LCD Glass-Handling Robot Driven by a PMSM,” Applied Mathematical Modelling, Vol. 34, No. 5, pp. 1360–1381.
[55]Wolfram, S., 1999, The Mathematica Book, Version 4, Cambridge University Press, United Kingdom.
[56] Chen, J. C. and Fung, R. F., 2004, Dynamic Analysis and Multiply-Object Optimal Design of a Toggle Mechanism, National Kaohsiung First University of Science and Technology, Thesis. OAI: repository.nkfust.edu.tw:987654321/8389
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top