跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉其致
研究生(外文):YE, QI-ZHI
論文名稱:膠態電解質應用於氧化鎢電致變色元件之研究
論文名稱(外文):Preparation of Gel Electrolyte for the Tungsten Oxide-based Electrochromic Devices
指導教授:呂英治
指導教授(外文):LUE, ING-CHI
口試委員:林炯棟鍾儀文
口試委員(外文):LIN, JYUNG-DONGCHUNG, YI-WEN
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:氧化鎢薄膜W18O49奈米線膠態電解質二茂鐵電致變色
外文關鍵詞:tungsten oxideW18O49 nanowiresgel electrolyteferroceneelectrochromic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:495
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
由於環保意識的抬頭,有許多科學研究人員都爭相投入節能相關領域中,電致變色元件也為其中的一環,有許多材料都可作為電致變色的用途,而大多的研究多著重於變色材料的形貌、電化學反應及光電特性等。變色材料的變色特性固然重要,但由於電致變色元件是由多層結構組合而成,所以其元件中的每一層功能材料也是研發的重點,而電解質也會影響元件的電致變色特性,所以本研究將以電致變色材料中的膠態電解質層的組成及其特性作為研究的主軸。
本研究以射頻式反應性濺鍍製備非晶態的氧化鎢薄膜,以及使用高壓水熱法製備W18O49奈米線陣列於透明導電玻璃(FTO)上,接著以簡單製程所配製的非水系膠態電解質塗佈於鍍有變色材料的電極及空白電極之間並且將其組合封裝,最後使用電源供應器(CHI)供應外加電壓,以及結合UV-vis光譜儀進行動態光學穿透度量測。
本研究中,將分成兩大主題,第一項為氧化鎢薄膜及W18O49奈米線對於電致變色元件之影響,結果顯示出W18O49奈米線具有較大的比表面積及細微結構,使其有相較於氧化鎢薄膜較佳的電致變色特性;第二項為膠態電解質層中離子種類及濃度對於電致變色元件之影響,並將不同系統之電解質結合不同形貌的氧化鎢材料進行量測及分析。其中,離子來源以鋰離子及鋁離子為主,之後再加入不同濃度的二茂鐵並比較其電致變色特性與前者有何差別。結果顯示:當鋰離子濃度為0.75 M時出現最高的對比度(~50%)、鋁離子濃度為0.25M時出現最高對比度(~59%),且鋁離子系統之電致變色元件其光學特性(對比度59%)及響應時間(著色:10s,去色:2s)相較於鋰離子系統之電致變色元件有些微改善;於鋰離子系統中再加入少量的二茂鐵時,只需提供較低的外加電壓(-1.5V)就能有媲美未添加之元件特性,且有較好的穩定性及電致變色元件性能。


With the increasing concern on environmental protection issues, many researchers devoted to the study of energy saving., including the development of electrochromic devices. Many materials can be used in the electrochromic devices, and many studies have been focused on the morphology and electrochemical characteristics of the electrochromic material. Since the electrochromic devices are composed of multiple layers, the function of the electrolyte also affects the performance of electrochromic devices. In this study we will focus on the effect of gel electrolyte layer on the properties of the electrochromic devices.
In the study, we used the radio frequency sputtering with appropriate reaction parameters to prepare the tungsten oxide thin films on the FTO substrate. We also use the hydrothermal method to fabricate the W18O49 nanowire arrays on the FTO substrate in order to understand the dimension of tungsten oxide on the device performance. Then non-aqueous gel electrolytes with different compositions were sandwiched in-between the FTO glasses. Finally, the electrochromic performance in dynamic mode was evaluated with CHI DC power supply and UV-vis spectrometer.
The results and discussion in this thesis can be into two parts. The first part is to study the morphology and electrical characteristics of electrochromic materials (tungsten oxide films and W18O49 nanowires) on the electrochromic performance of the devices. The second part is to discuss the effect of ion species and their concentration in the electrolyte on the electrochromic performance of the device. The ion types included the lithium ion and the aluminum ion. In addition, different concentrations of ferrocene were added in the system of lithium ion electrolyte in order to investigate their special electrochromic characteristics. We observed that the device has a maximum contrast (~50%) at 0.75M Li ion concentration in the assembled system and the device has a maximum contrast (~59%) at 0.25M Al ion concentration in the assembled system, respectively. The optical contrast and reaction response time of the devices using aluminum ion electrolyte are better than the system based on lithium ion electrolyte. Finally, a slight amount of ferrocene was added in the lithium ion electrolyte system, and the device has a good electrochromic performance even at low applied voltages.

目次
中文摘要 i
英文摘要 ii
致謝 iv
目次 v
表次 vii
圖次 viii
第一章 緒論 1
1-1前言 1
1-2 電致變色的應用 2
1-3 研究動機及目的 3
第二章 理論基礎與文獻回顧 5
2-1變色材料: 5
2-1-1光致變色材料: 5
2-1-2熱致變色材料: 6
2-1-3電致變色材料: 7
2-2電致變色元件之變色原理及元件組成: 8
2-2-1透明基板: 10
2-2-2透明導電薄膜: 10
2-2-3電致變色層: 10
2-2-4電解質層: 11
2-2-5輔助電極或離子儲存層: 11
2-3氧化鎢電致變色材料: 12
2-3-1反應性磁控濺鍍法之氧化鎢薄膜 13
2-3-2水熱法之W18O49奈米線陣列薄膜 15
2-4電解質: 16
2-4-1液態電解質: 16
2-4-2膠態電解質: 18
2-4-3固態電解質: 19
第三章 實驗方法與步驟 21
3-1 實驗藥品與材料 22
3-2 水熱法壓力釜設備 23
3-3 反應性磁控濺鍍法(RF)製備之氧化鎢電致變色層 24
3-4水熱法製備W18O49奈米線之電致變色層 24
3-5膠態電解質之製備 24
3-5-1鋰離子系統 24
3-5-2鋁離子系統 25
3-5-3雙離子(Li+、Al3+)系統 25
3-5-4鋰離子系統添加二茂鐵 25
3-6電致變色元件之組裝及量測 26
3-6-1元件組裝 26
3-6-2動態量測 26
3-7 材料分析 28
3-7-1掃描式電子顯微鏡(SEM) 28
3-7-2 X-ray繞射儀(XRD)分析 28
3-7-3交流阻抗(AC impedance)-離子導電率 29
第四章 結果與討論 30
4-1以反應性磁控濺鍍法製備氧化鎢薄膜 31
4-2以水熱法製備W18O49奈米線陣列 32
4-3 鋰離子系統結合氧化鎢薄膜之電致變色元件 34
4-4 鋰離子系統結合W18O49奈米線陣列之電致變色元件 36
4-5 不同黏度的電解質結合W18O49奈米線陣列之探討 40
4-6 鋁離子系統結合氧化鎢薄膜之電致變色元件 42
4-7 鋁離子系統結合W18O49奈米線陣列之電致變色元件 45
4-9 二茂鐵添加於鋰離子系統結合薄膜型之電致變色元件 50
4-10 二茂鐵添加於鋰離子結合奈米線之電致變色元件 53
第五章 結論 58
參考文獻 59


[1].E. S. Lee and D. DiBartolomeo,"Application issues for large-area electrochromic windows in commercial buildings", Solar Energy Materials and Solar Cells, 2002,71, 465-491.
[2].F. Baucke,"Electrochromic applications", Materials Science and Engineering: B, 1991,10, 285-292.
[3].X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu and Y. Xie,"A zwitterionic gel electrolyte for efficient solid-state supercapacitors", Nat Commun, 2016,7, 11782.
[4].R. Cinnsealach, G. Boschloo, S. N. Rao and D. Fitzmaurice,"Electrochromic windows based on viologen-modified nanostructured TiO2 films", Solar Energy Materials and Solar Cells, 1998,55, 215-223.
[5].Y. Djaoued, S. Balaji and N. Beaudoin,"Sol–gel synthesis of mesoporous WO3–TiO2 composite thin films for photochromic devices", Journal of Sol-Gel Science and Technology, 2013,65, 374-383.
[6].Y. Hirshberg,"Photochromie dans la serie de la bianthrone", Compyes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 1950,231, 903-904.
[7].Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira and C. Cao,"Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing", Nano Energy, 2012,1, 221-246.
[8].C. Wu, F. Feng and Y. Xie,"Design of vanadium oxide structures with controllable electrical properties for energy applications", Chem Soc Rev, 2013,42, 5157-5183.
[9].C. G. Granqvist,"Electrochromic tungsten oxide films: review of progress 1993–1998", Solar Energy Materials and Solar Cells, 2000,60, 201-262.
[10].G. A. Niklasson and C. G. Granqvist,"Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these", Journal of Materials Chemistry, 2007,17, 127-156.
[11].D. M. DeLongchamp and P. T. Hammond,"High‐contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites", Advanced Functional Materials, 2004,14, 224-232.
[12].K. Itaya, K. Shibayama, H. Akahoshi and S. Toshima,"Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device", Journal of Applied Physics, 1982,53, 804-805.


[13].A. Talledo and C. G. Granqvist,"Electrochromic vanadium–pentoxide–based films: Structural, electrochemical, and optical properties", Journal of Applied Physics, 1995,77, 4655-4666.
[14].H. C. Moon, C. H. Kim, T. P. Lodge and C. D. Frisbie,"Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels", ACS Appl Mater Interfaces, 2016,8, 6252-6260.
[15].鄧耀宗,"變色窗技術發展與節能效益",化工技術,第八卷,第六期, 2000.
[16].Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng and Z. Zhao,"Unconventional Aluminum Ion Intercalation/Deintercalation for Fast Switching and Highly Stable Electrochromism", Advanced Functional Materials, 2015,25, 5833-5839.
[17].H. Oh, D. G. Seo, T. Y. Yun, C. Y. Kim and H. C. Moon,"Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels", ACS Applied Materials & Interfaces, 2017,9, 7658-7665.
[18].J. Bae, H. Kim, H. C. Moon and S. H. Kim,"Low-voltage, simple WO3-based electrochromic devices by directly incorporating an anodic species into the electrolyte", J. Mater. Chem. C, 2016,4, 10887-10892.
[19].D. T. Gillaspie, R. C. Tenent and A. C. Dillon,"Metal-oxide films for electrochromic applications: present technology and future directions", Journal of Materials Chemistry, 2010,20, 9585-9592.
[20].S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky and E. W. McFarland,"Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films", Advanced Materials, 2003,15, 1269-1273.
[21].M. Feng, A. Pan, H. Zhang, Z. Li, F. Liu, H. Liu, D. Shi, B. Zou and H. Gao,"Strong photoluminescence of nanostructured crystalline tungsten oxide thin films", Applied Physics Letters, 2005,86, 141901.
[22].I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld and D. Mandler,"ªWriting±Reading±Erasingº on Tungsten Oxide Films using the Scanning Electrochemical Microscope", Adv. Mater, 2000,12.
[23].A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding and Z. L. Wang,"Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks", Applied Physics Letters, 2006,88, 203101.
[24].M. Akiyama, J. Tamaki, N. Miura and N. Yamazoe,"Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2", Chemistry Letters, 1991,20, 1611-1614.
[25].A.-L. Larsson and G. A. Niklasson,"Infrared emittance modulation of all-thin-film electrochromic devices", Materials Letters, 2004,58, 2517-2520.

[26].E. Franke, C. Trimble, J. Hale, M. Schubert and J. A. Woollam,"Infrared switching electrochromic devices based on tungsten oxide", Journal of Applied Physics, 2000,88, 5777-5784.
[27].J. Hao, S. Studenikin and M. Cocivera,"Transient photoconductivity properties of tungsten oxide thin films prepared by spray pyrolysis", Journal of Applied Physics, 2001,90, 5064-5069.
[28].J. R. Platt,"Electrochromism, a possible change of color producible in dyes by an electric field", The Journal of Chemical Physics, 1961,34, 862-863.
[29].B. W. Faughnan, R. S. Crandall and P. M. Heyman,"Electrochromism in WO3 amorphous films", Rca Review, 1975,36, 177-197.
[30].V. Madhavi, P. Kondaiah, O. M. Hussain and S. Uthanna,"Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films", Physica B: Condensed Matter, 2014,454, 141-147.
[31].B. J. Liu, J. Zheng, J. L. Wang, J. Xu, H. H. Li and S. H. Yu,"Ultrathin W18O49 nanowire assemblies for electrochromic devices", Nano Lett, 2013,13, 3589-3593.
[32].C.-H. Lu, M.-H. Hon, C.-Y. Kuan and I.-C. Leu,"A complementary electrochromic device based on W18O49 nanowire arrays and Prussian blue thin films", RSC Adv., 2016,6, 1913-1918.
[33].R. Zhang, Y. Chen and R. Montazami,"Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries", Materials, 2015,8, 2735-2748.
[34].X. G. Sun, Y. Fang, X. Jiang, K. Yoshii, T. Tsuda and S. Dai,"Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries", Chem Commun (Camb), 2016,52, 292-295.
[35].W. Xiang, W. Huang, U. Bach and L. Spiccia,"Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte", Chem Commun (Camb), 2013,49, 8997-8999.
[36].G. P. Pandey, A. C. Rastogi and C. R. Westgate,"All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte", Journal of Power Sources, 2014,245, 857-865.
[37].G. P. Pandey and S. A. Hashmi,"Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors", Journal of Materials Chemistry A, 2013,1, 3372.
[38].M. Z. Kufian, M. F. Aziz, M. F. Shukur, A. S. Rahim, N. E. Ariffin, N. E. A. Shuhaimi, S. R. Majid, R. Yahya and A. K. Arof,"PMMA–LiBOB gel electrolyte for application in lithium ion batteries", Solid State Ionics, 2012,208, 36-42.
[39].N. Kobayashi, S. Miura, M. Nishimura and Y. Goh,"Gel electrolyte-based flexible electrochromic devices showing subtractive primary colors", Electrochimica Acta, 2007,53, 1643-1647.
[40].N. Garino, S. Zanarini, S. Bodoardo, J. R. Nair, S. Pereira, L. Pereira, R. Martins, E. Fortunato and N. Penazzi,"Fast Switching Electrochromic Devices Containing Optimized BEMA/PEGMA Gel Polymer Electrolytes", International Journal of Electrochemistry, 2013,2013, 1-10.
[41].G. Cai, P. Darmawan, M. Cui, J. Chen, X. Wang, A. L. Eh, S. Magdassi and P. S. Lee,"Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes", Nanoscale, 2016,8, 348-357.
[42].P. Ledwon, J. R. Andrade, M. Lapkowski and A. Pawlicka,"Hydroxypropyl cellulose-based gel electrolyte for electrochromic devices", Electrochimica Acta, 2015,159, 227-233.
[43].Y. Yang, H. Hu, C.-H. Zhou, S. Xu, B. Sebo and X.-Z. Zhao,"Novel agarose polymer electrolyte for quasi-solid state dye-sensitized solar cell", Journal of Power Sources, 2011,196, 2410-2415.
[44].P. Cossari, A. Cannavale, S. Gambino and G. Gigli,"Room temperature processing for solid-state electrochromic devices on single substrate: From glass to flexible plastic", Solar Energy Materials and Solar Cells, 2016,155, 411-420.
[45].M.-S. Fan, S.-Y. Kao, T.-H. Chang, R. Vittal and K.-C. Ho,"A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butyl viologen) thin films", Solar Energy Materials and Solar Cells, 2016,145, 35-41.
[46].M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad and S. A. Agnihotry,"Electrochromic Nanostructured Tungsten Oxide Films by Sol-gel: Structure and Intercalation Properties", Journal of The Electrochemical Society, 2006,153, C365.
[47].A. Subrahmanyam and A. Karuppasamy,"Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films", Solar energy materials and solar cells, 2007,91, 266-274.
[48].Y. K. H. a. K.-T. L. Yoon-Tae Park,"Characterization of electrochromic WO3 thin films fabricated by an RF sputtering method", Journal of Ceramic Processing Research, 2013,14, 337~341.
[49].L.-g. Wang, Y.-r. Hu, G.-q. Li and W. Xie,"Formation and transmittance property of WO3 films deposited by mid-frequency dual-target magnetron sputtering", Surface and Coatings Technology, 2007,201, 5063-5067.
[50].Z. P. Rosol, N. J. German and S. M. Gross,"Solubility, ionic conductivity and viscosity of lithium salts in room temperature ionic liquids", Green Chemistry, 2009,11, 1453-1457.
[51].F. Azeez and P. S. Fedkiw,"Conductivity of libob-based electrolyte for lithium-ion batteries", Journal of Power Sources, 2010,195, 7627-7633.


[52].V. B. Achari, T. J. R. Reddy, A. K. Sharma and V. V. R. N. Rao,"Electrical, optical, and structural characterization of polymer blend (PVC/PMMA) electrolyte films", Ionics, 2007,13, 349-354.
[53].D.-H. Kim,"Effects of phase and morphology on the electrochromic performance of tungsten oxide nano-urchins", Solar Energy Materials and Solar Cells, 2012,107, 81-86.
[54].S. Sun, X. Chang, T. Liu, Y. Lu and Y. Wang,"Solvothermal synthesis of tungsten oxide mesocrystals and their electrochromic performance", Materials Letters, 2013,105, 54-57.
[55].X. Chang, S. Sun, Z. Li, X. Xu and Y. Qiu,"Assembly of tungsten oxide nanobundles and their electrochromic properties", Applied Surface Science, 2011,257, 5726-5730.
[56].H.-C. Lu, S.-Y. Kao, T.-H. Chang, C.-W. Kung and K.-C. Ho,"An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene", Solar Energy Materials and Solar Cells, 2016,147, 75-84.
[57].D. Weng, M. Li, J. Zheng and C. Xu,"High-performance complementary electrochromic device based on surface-confined tungsten oxide and solution-phase N-methyl-phenothiazine with full spectrum absorption", Journal of Materials Science, 2016,52, 86-95.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊