跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊儒
研究生(外文):Chun-Ju Lin
論文名稱:無源自反饋諧波鎖模弱共振腔雷射光源為基底之10-Gb/s 歸零訊號傳輸系統
論文名稱(外文):Self-Triggered Harmonic Mode-Locking WRC-FPLD Based Synthesizer-Free 10 Gbit/s RZ Data Transmission System
指導教授:林恭如
口試委員:黃升龍呂海涵
口試日期:2011-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:81
中文關鍵詞:歸零訊號弱共振腔雷射諧波鎖模自反饋光電振盪器
外文關鍵詞:return-to-zero dataweak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD)harmonic mode-lockingself-feedbackoptoelectronic oscillator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將光電振盪器之架構應用於驅動諧波鎖模弱共振腔雷射光源,並將此一光源應用於產生10 Gbit/s歸零訊號。脈衝寬是判斷鎖模好壞的重要參數,而從描述自反饋雷射二極體之速率方程式,並修正主動鎖模理論中的脈衝寬公式,我們可以得知脈衝寬會隨光自反饋功率比以及微波訊號功率增益上升而下降。在90%的光自反饋功率比與微波放大器所能提供最大增益35 dB下,可以得到20 ps的最窄脈衝寬以及0.9 ps的時基誤差。進一步將此優化過之載波藉Mach-Zehnder調變器載上非歸零開關鍵訊號後,可得歸零訊號串列且具有10.2 dB的訊雜比以及13.8 dB的消光比,而其在誤碼率為10-9時的最小接收功率為-18.7 dBm。為達到通道化的系統,我們將此一訊號通過200-GHz通道間隔的陣列波導光柵並得到-16.5 dBm的接收靈敏度。為了進一步提升系統性能,我們嘗試在光電振盪器迴路內加入不同長度的單模光纖,並發現在加入100公尺光纖的系統中性能可以得到最佳的改善,在100 Hz的位移頻率下,相位雜訊可下降到-70 dBc/Hz,脈衝寬可以降到18.5 ps,時基誤差則能下降到0.67 ps。然而當光纖長度超過200 m,系統則會快速劣化,這是因為啾頻、雷射模態分割雜訊、光電振盪器的旁模雜訊、環境擾動這四項劣化因素都會隨腔長增加而上升,因此抵銷了原本預期延長腔長對Q的提升所能帶來的改善。此外,為了要抑制光電振盪器的旁模雜訊,我們使用了雙路徑的光電振盪器架構來消除旁模的共振條件。但傳統的雙腔路徑長設計原則會導致腔內的等效Q值因為腔內能量分布於短腔而大幅下降,因此我們藉由雙腔光電振盪器的閉路轉移函數對理論作修正,並透過選擇雙腔的腔長差來達到使振盪器旁模雜訊最小的效果。然而在實驗中我們並沒有發現顯著的改善,這是因為光電振盪器的腔長仍不夠長,消除旁模所能帶來的改善不大,而雙腔架構又有拍頻雜訊會轉換為相位雜訊以及強度雜訊,這兩個效果彼此抵消使得雙腔架構性能並沒有明顯的提升。

A self-triggered harmonic mode-locked weak-resonant-cavity Fabry-Perot laser diode is employed as the 10 Gbit/s RZ data generator. Derived from the rate equation, the pulsewidth formula in actively mode-locking theory is modified and illuminates the shortening of the pulse as a function of optical feedback ratio and microwave power gain. The pulsewidth is narrower with higher optical injection and microwave gain due to the gain saturation of the laser diode and the increase of the modulation depth. The timing jitter, pulsewidth of the pulse train and phase noise of the microwave signal under different biased current, optical injection and microwave gain are measured. The optimized jitter and pulsewidth are 0.9 ps and 20 ps, respectively. With higher microwave gain, the SNR and ER are improved to 10.2 dB and 13.8 dB due to the enhancement of the peak power and elimination of the residual carrier. At the optimized operation condition, the receiving sensitivity of -18.5 dBm and -16.5 dBm before and after channelization, respectively, are obtained with 10 Gbit/s RZ-OOK data.
To further enhance the cavity Q-value, 100-m single mode fiber is added in the OEO loop. The minimal single sided-band phase noise of -70 dBc/Hz at 100Hz offset is measured while significant degradation is observed with cavity length longer than 200 m. The optimized pulse train exhibits timing jitter of 0.67 ps and pulsewidth of 18.5 ps with 100-m single mode fiber. Chirping, mode-partition noise, spurious signal and environmental fluctuation are enlarged with longer loop length and these factors oppose the expected improvement induced by longer cavity and the resultant higher Q-value. The optimized RZ pulsed carrier modulated by MZM with 10 Gbit/s RZ-OOK data shows high SNR of 11 dB and lower receiving sensitivity of -19.2 dBm than the system with original cavity length. With 200-GHZ spacing AWG, the channelization is performed and the power penalty of only 2.5 dB can be attributed to the narrow linewidth of 0.77 nm since most signal on the carrier can transmit through the passband of the AWG.
To suppress the spurious signal, the dual OEO loop structure is employed. A theoretical analysis based on the relationship between closed-loop intensity transfer function, power ratio between two loops and the cavity lengths is derived for exploring the optimized principle of dual-loop OEO structure. The dual-loop scheme in the proposed system is realized with different cavity length and the optimized condition is 100-m, 120-m loop length with equal power. The spurious signal in the system with longer cavity is vanished with the use of dual-loop structure. The phase noise is about -100 dBc/Hz at 10-kHz and the RMS timing jitter and pulsewidth are 0.67 ps and 18.3 ps, respectively. These parameters have no obvious change compared with single loop case except the elimination of the spurious signal. The SNR slightly decays to 10.9 dB and the receiving power at BER of 10-9 is -19.2 dBm in the optimized condition with 10 Gbit/s RZ-OOK data from PRBS source triggered by the OEO microwave signal.

口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 2
1.3 Organization of the Thesis 3
1.4 Reference 4
Chapter 2 The Effects of the Optical Injection and Microwave Gain on Transmission Performance of the Self-Triggered Harmonic Mode-Locked WRC-FPLD RZ Data Generator at 10 Gbit/s 8
2.1 Introduction 8
2.2 Experimental setup 11
2.3 Theoretical analysis of the pulsewidth of the output pulse train with self-feedback and OEO loop 12
2.4 Results and Discussions 19
2.5 Summary 26
2.6 Reference 27
Chapter 3 Effect of Cavity Length on Pulsed Carrier and BER Performance of the Self-Triggered Beyond-Bandwidth Mode-Locked WRC-FPLD Based RZ Data Transmitter at 10 Gbit/s 36
3.1 Introduction 36
3.2 Experimental setup 38
3.3 Results and discussions 40
3.4 Summary 46
3.5 Reference 47
Chapter 4 Harmonically Mode-Locked WRC-FPLD Self-Triggered by Dual-Loop Feedback Operated Beyond-Bandwidth as 10-Gbit/s RZ-OOK Transmitter 54
4.1 Introduction 54
4.2 Experimental Setup 56
4.3 Dual-Loop OEO Structure with Length Difference Determined by Theoretical Treatment 58
4.4 Results and Discussion 63
4.5 Summary 67
4.6 Reference 68
Chapter 5 Conclusion 77
作者簡介 79

[1.1]D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett., vol. 9, no. 3, pp. 398-400, 1997.
[1.2]M. I. Hayee, and A. E. Willner, “NRZ versus RZ in 10–40-Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 991-993, 1999.
[1.3]R. Ludwig, U. Feiste, E. Dietrich, H. G. Weber, D. Breuer, M. Martin and F. Kuppers, “Experimental comparison of 40Gbit/s RZ and NRZ transmission over standard singlemode fibre,” Elecron. Lett., vol. 35, no. 25, pp. 2216-2218, 1999.
[1.4]J. A. R. Williams, I. Bennion, K. Sugden and N. J. Doran, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Elecron. Lett., vol. 35, no. 25, pp. 2216-2218, 1994.
[1.5]R. S. Tucker, J. M. Wiesenfeld, A. H. Gnauck, J. E. Bowers, “8 Gbit/s return-to-zero modulation of a semiconductor laser by gain-switching,” Elecron. Lett., vol. 22, no. 25, pp. 1329-1331, 1986.
[1.6]A. J. Torregrosa, H. Maestre, J. Capmany, and C. R. Fernández-Pousa, “Return-to-zero pulse generators using overdriven amplitude modulators at one fourth of the data rate,” IEEE Photon. Technol. Lett., vol. 19, no. 22, pp. 1837-1839, 2007.
[1.7]P. J. Winzer, C. Dorrer, R. J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1379–1381, 2004.
[1.8]C. Peucheret, Y. Geng, M. Svalgaard, B. Zsigri, H. R. Sørensen, N. Chi, H. J. Deyerl, M. Kristensen, and P. Jeppesen, “Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1674-1676, 2005.
[1.9]A. Ougazzaden, C. W. Lentz, T. G. B. Mason, K. G. Glogovsky, C. L. Reynolds, G. J. Przybylek, R. E. Leibenguth, T. L. Kercher, J. W. Boardman, M. T. Rader, J. M. Geary, F. S. Walters, L. J. Peticolas, J. M. Freund, S. N. G. Chu, A. Sirenko, R. J. Jurchenko, M. S. Hybertsen, and L. J. P. Ketelsen, “40Gb/s tandem electro-absorption modulator,” in Optical Fiber Communication Conference (OFC), Anaheim, California, 2000, paper PD14-1.
[1.10]Y. C. Chi, and G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on-off-keying data generator”, IEEE Trans. Micro. Theory Tech., vol. 58, pp. 2292-2298, 2010.
[1.11]R. T. Kersten, “Ein optisches Nachrichtensystem mit Bauelementen der integrierten Optik fur die Ubertragung hoher Bitraten,” Arch. Elektrotech., vol. 60, no. 6, pp. 353–359, 1978.
[1.12]H. E. Kotb, A. M. E. Safwat, H. Boghdady, and D. A. M. Khalil, “RF optoelectronic oscillator using a directly modulated semiconductor laser and a fiber optical ring filter,” Microwave Opt. Technol. Lett., vol. 51, no. 2, pp. 470-475, 2009.
[1.13]H. Hasegawa, Y. Oikawa, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 850 nm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 19, pp. 1451-1453, 2007.
[1.14]M. Shin, P. S. Devgan, V. S. Grigoryan, P. Kumar, Y. D. Chung, and J . Kim, “Low phase noise 40 GHz optical pulses from a self-starting EAM-based OEO,” in Opt. Fiber Commun. Conf., Anaheim, CA, Mar. 2006.
[1.15]T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation,” Opt. Lett., vol. 31, no. 6, pp. 811–813, Mar. 2006.
[1.16]X. S. Yao and L. Maleki, “Dual microwave and optical oscillator,” Opt. Lett., vol. 22, no. 24, pp.1867-1869, 1997.
[1.17]G. R. Huggett, “Mode-locking of CW lasers by regenerative RF feedback,” Appl. Phys. Lett., vol. 12, no. 5, pp. 186-187, 1968.
[1.18]K. K. Gupta, D. Novak, and H. F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring Laser,” IEEE J. Quantum Electron., vol. 36, no. 1, pp. 70-78, 2000.
[1.19]X. S. Yao, and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron., vol. 36, pp. 79-84, 2000.
[1.20]D. Eliyahu, and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” Proc. Joint 2003 IEEE Frequency Control Symposium and 17 European Frequency and Time Forum, pp. 405-410, 2003.
[1.21]G.-R. Lin, H. L. Wang, G. C. Lin, Y. H. Huang, Y. H. Lin, and T. K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” IEEE J. Lightwave Technol. vol. 27, no. 14, pp. 2779–2785, 2009.
[1.22]Y. H. Lin, C. J. Lin, G. C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express, vol. 19, pp. 4067-4075, 2011.

[2.1]D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett., vol. 9, no. 3, pp. 398-400, 1997.
[2.2]H. Taga, M. Suzuki, and Y. Namihira, “Polarisation mode dispersion tolerance of 10 Gbit/s NRZ and RZ optical signals,” Elecron. Lett., vol. 34, no. 22, pp. 2098-2100, 1998.
[2.3]R. Ludwig, U. Feiste, E. Dietrich, H. G. Weber, D. Breuer, M. Martin and F. Kuppers, “Experimental comparison of 40Gbit/s RZ and NRZ transmission over standard singlemode fibre,” Elecron. Lett., vol. 35, no. 25, pp. 2216-2218, 1999.
[2.4]R. S. Tucker, J. M. Wiesenfeld, A. H. Gnauck, J. E. Bowers, “8 Gbit/s return-to-zero modulation of a semiconductor laser by gain-switching,” Elecron. Lett., vol. 22, no. 25, pp. 1329-1331, 1986.
[2.5]A. J. Torregrosa, H. Maestre, J. Capmany, and C. R. Fernández-Pousa, “Return-to-zero pulse generators using overdriven amplitude modulators at one fourth of the data rate,” IEEE Photon. Technol. Lett., vol. 19, no. 22, pp. 1837-1839, 2007.
[2.6]P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1298-1300, 2001.
[2.7]C. Peucheret, Y. Geng, M. Svalgaard, B. Zsigri, H. R. Sørensen, N. Chi, H. J. Deyerl, M. Kristensen, and P. Jeppesen, “Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1674-1676, 2005.
[2.8]A. Ougazzaden, C. W. Lentz, T. G. B. Mason, K. G. Glogovsky, C. L. Reynolds, G. J. Przybylek, R. E. Leibenguth, T. L. Kercher, J. W. Boardman, M. T. Rader, J. M. Geary, F. S. Walters, L. J. Peticolas, J. M. Freund, S. N. G. Chu, A. Sirenko, R. J. Jurchenko, M. S. Hybertsen, and L. J. P. Ketelsen, “40Gb/s tandem electro-absorption modulator,” in Optical Fiber Communication Conference (OFC), Anaheim, California, 2000, paper PD14-1.
[2.9]Y. S. Liao, Y. C. Chi, H. C. Kuo, and G.-R. Lin, “Pulsating master and injected slave weak-resonant-cavity laser diodes based quasi-color-free 2.5Gb/s RZ DWDM-PON,” in Optical Fiber Communication Conference (OFC), Los Angeles, California, 2011, paper JWA67.
[2.10]Y. C. Chi, and G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on-off-keying data generator”, IEEE Trans. Micro. Theory Tech., vol. 58, pp. 2292-2298, 2010.
[2.11]X. S. Yao and L. Maleki, ”Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron., vol. 32, no. 7, pp. 1141-1149, 1996.
[2.12]J. Lasri, P. Devgan, R. Tang, and P. Kumar, “Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10GHz or higher) optical pulses”, Opt. Express, vol. 11, pp. 1430-1435, 2003.
[2.13]T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation,” Opt. Lett., vol. 31, no. 6, pp. 811-813, 2006.
[2.14]X. S. Yao and L. Maleki, “Dual microwave and optical oscillator,” Opt. Lett., vol. 22, no. 24, pp.1867-1869, 1997.
[2.15]D. Dahan, E. Shumakher, and G. Eisenstein, “Self-starting ultralow-jitter pulse source based on coupled optoelectronic oscillators with an intracavity fiber parametric amplifier,” Opt. Lett., vol. 30, no. 13, pp. 1623-1625, 2005.
[2.16]N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration”, Opt. Lett., vol. 30, pp. 1231-1233, 2005.
[2.17]A. B. Matsko, D. Eliyahu, P. Koonath, D. Seidel, and L. Maleki, “Theory of coupled optoelectronic microwave oscillator I: expectation values,” J. Opt. Soc. Am. B., vol.26, no. 5 pp. 1023-1031, 2009.
[2.18]G. H. Peng, Y. C. Chi, and G.-R. Lin, “DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring”, Opt. Express, vol. 16, 13405-13413, 2008.
[2.19]G.-R. Lin, Y. H. Lin, C. J. Lin, Y. C. Chi and G. C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” J. Quantum Electron., vol. 47, pp. 676-685, 2011.
[2.20]R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976-983, 1982.
[2.21]E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Select. Topics Quantum Electron., vol. 15, no. 3, pp.618-633, 2009.
[2.22]H. A. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs, NJ: Prentice-Hall, 1985, chap. 9.
[2.23]D. K. Yoo, Y. Li, S. M. Goldwasser, W. D. Jemison, and P. R. Herczfeld, “Coupled optoelectronic oscillation via fundamental mode-locking in a composite-cavity electro-optic microchip laser,” IEEE J. Lightwave Technol., vol. 26, pp. 824-831, 2008.

[3.1]X. S. Yao and L. Maleki, ”Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B., vol. 13, pp. 1725-1735, 1996.
[3.2]J. Lasri, P. Devgan, R. Tang, and P. Kumar, “Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10GHz or higher) optical pulses”, Opt. Express, vol. 11, pp. 1430-1435, 2003.
[3.3]H. Hasegawa, Y. Oikawa, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 850 nm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 19, pp. 1451-1453, 2007.
[3.4]X. S. Yao and L. Maleki, “Dual microwave and optical oscillator,” Opt. Lett., vol. 22, pp. 1867-1869, 1997.
[3.5]X. S. Yao, L. Davis, and L. Maleki, “Coupled Optoelectronic Oscillators for Generating Both RF Signal and Optical Pulses,” J. Lightwave Technol., vol. 18, pp. 73-78, 2000.
[3.6]A. B. Matsko, D. Eliyahu, P. Koonath, D. Seidel, and L. Maleki, “Theory of coupled optoelectronic microwave oscillator I: expectation values,” J. Opt. Soc. Am. B., vol. 26, pp. 1023-1031, 2009.
[3.7]M. Nakazawa, E. Yoshida, and K. Tamura, “Ideal phase-locked-loop (PLL) operation of a 10 GHz erbium-doped fibre laser using regenerative modelocking as an optical voltage controlled oscillator,” Elecron. Lett., vol. 33, pp. 1318-1320, 1997.
[3.8]K. K. Gupta, D. Novak, and H. F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring Laser,” IEEE J. Quantum Electron., vol. 36, pp. 70-78, 2000.
[3.9]E. Salik, N. Yu, M. Tu, and L. Maleki, “EDFA-based coupled opto-electronic oscillator and its phase noise,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FB6.
[3.10]N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration”, Opt. Lett., vol. 30, pp. 1231-1233, 2005.
[3.11]D. K. Yoo, Y. Li, S. M. Goldwasser, W. D. Jemison, and P. R. Herczfeld, “Coupled optoelectronic oscillation via fundamental mode-locking in a composite-cavity electro-optic microchip laser,” J. Lightwave Technol., vol. 26, pp. 824-831, 2008.
[3.12]G. H. Peng, Y. C. Chi, and G.-R. Lin, “DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring”, Opt. Express, vol. 16, pp. 13405-13413, 2008.
[3.13]G.-R. Lin, T. K. Cheng, Y. H. Lin, G. C. Lin, and H. L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol., vol. 28, pp. 1349-1355, 2010.
[3.14]Y. H. Lin, C. J. Lin, G. C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express, vol. 19, pp. 4067-4075, 2011.
[3.15]A. J. Taylor, J. M. Wiesenfeld, G. Eisenstein, R. S. Tucker, “Timing jitter in mode-locked and gain-switched InGaAsP injection lasers,” Appl. Phys. Lett. vol. 49, pp. 681-683, 1986.
[3.16]Y. C. Chi, and G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on-off-keying data generator”, IEEE Trans. Micro. Theory Tech., vol. 58, pp. 2292-2298, 2010.
[3.17]G. P. Agrawal, Fiber-Optic Communication Systems, chap. 3, (Wiley Inter-Science, 2002).
[3.18]K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol., vol. 28, pp. 2730-2735, 2010.
[3.19]D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Opto-electronic oscillator with improved phase noise and frequency stability,” Proc. of SPIE, Photonic Integrated Systems, San Jose, vol. 4998, pp. 139-147, 2003.

[4.1]S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, and M. Saruwatari, “200 Gbit/s, 100 km time-division multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing,” Elecron. Lett., vol. 31, pp. 816–817, 1995.
[4.2]M. I. Hayee, and A. E. Willner, “NRZ versus RZ in 10–40-Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 991-993, 1999.
[4.3]R. Ludwig, U. Feiste, E. Dietrich, H. G. Weber, D. Breuer, M. Martin and F. Kuppers, “Experimental comparison of 40Gbit/s RZ and NRZ transmission over standard singlemode fibre,” Elecron. Lett., vol. 35, no. 25, pp. 2216-2218, 1999.
[4.4]Y. C. Chi, and G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on-off-keying data generator,” IEEE Trans. Micro. Theory Tech., vol. 58, pp. 2292-2298, 2010.
[4.5]X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating both RF signal and optical pulses,” IEEE J. Lightwave Technol., vol. 18, no. 1, pp. 73-78, 2000.
[4.6]D. Dahan, E. Shumakher, and G. Eisenstein, “Self-starting ultralow-jitter pulse source based on coupled optoelectronic oscillators with an intracavity fiber parametric amplifier,” Opt. Lett., vol. 30, no. 13, pp. 1623-1625, 2005.
[4.7]F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, ”Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” IEEE J. Lightwave Technol. vol. 26, no. 15, pp. 2571–2577, 2008.
[4.8]A. B. Matsko, D. Eliyahu, P. Koonath, D. Seidel, and L. Maleki, “Theory of coupled optoelectronic microwave oscillator I: expectation values,” J. Opt. Soc. Am. B., vol.26, no. 5 pp. 1023-1031, 2009.
[4.9]M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively mode-locked polarization-maintaining erbium fiber ring laser,” Electron. Lett., vol. 30, pp. 1603–1605, 1994.
[4.10]B. Bakshi, P. A. Andrekson, and X. Zhang, “10 GHz modelocked, dispersion-managed and polarization-maintaining erbium fiber ring laser with variable output coupling,” Electron. Lett., vol. 34, no. 9, pp. 884–885, 1998.
[4.11]K. K. Gupta, D. Novak, and H. F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring Laser,” IEEE J. Quantum Electron., vol. 36, no. 1, pp. 70-78, 2000.
[4.12]G. Zhu, Q. Wang, H. Chen, H. Dong, and N. K. Dutta, “High-quality optical pulse train generation at 80 Gb/s using a modified regenerative-type mode-locked fiber laser,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 721-725, 2004.
[4.13]G.-R. Lin, H. L. Wang, G. C. Lin, Y. H. Huang, Y. H. Lin, and T. K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” IEEE J. Lightwave Technol. vol. 27, no. 14, pp. 2779–2785, 2009.
[4.14]Y. H. Lin, C. J. Lin, G. C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express, vol. 19, pp. 4067-4075, 2011.
[4.15]X. S. Yao, and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron., vol. 36, pp. 79-84, 2000.
[4.16]D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett., vol. 14, no. 2, pp. 191-193, 2002.
[4.17]D. Eliyahu, and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” Proc. Joint 2003 IEEE Frequency Control Symposium and 17 European Frequency and Time Forum, pp. 405-410, 2003.
[4.18]X. S. Yao and L. Maleki, ”Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron., vol. 32, no. 7, pp. 1141-1149, 1996.
[4.19]T. Bánky, B. Horváth, and T. Berceli, “A new approach for ultra-low phase noise millimeterwave opto-electronic oscillators,” in Proc. of International Topical Meeting on Microwave Photonics, 2003, pp. 205–208.
[4.20]T. Bánky, B. Horváth, and T. Berceli, “Optimum configuration of multiloop optoelectronic oscillators,” J. Opt. Soc. Am. B., vol. 23, pp. 1371-1380, 2006.
[4.21]M. R. Salehi and B. Cabon, “Theoretical and experimental analysis of influence of phase-to-intensity noise conversion in interferometric systems,” IEEE J. Lightwave Technol., vol. 22, pp. 1510-1518, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top