跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱春祥
研究生(外文):Chun-Hsiang Chiu
論文名稱:整合特徵結構指定法及線性指數二次高斯/迴路轉移函數回歸法之衛星姿態控制法研究
論文名稱(外文):Integration of Eigen-structure Assignment and LEQG/LTR for satellite attitude control
指導教授:林君明林君明引用關係
指導教授(外文):Jium-Ming Lin
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:70
中文關鍵詞:特徵結構指定線性指數二次高斯法迴路轉移函數法
外文關鍵詞:ESALEQG/LTR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
在本文中,整合特徵結構指定與線性指數二次高斯及迴路轉移函數法從事自轉衛星姿態控制系統設計。特徵值及特徵向量指定可提供合宜的系統阻尼及自然響應,線性指數二次高斯及迴路轉移函數在設計過程中同時考量系統擾動及量測雜訊,因此,結合這兩種設計技巧的控制系統,可提供預定的穩定度及最佳的性能響應。最後,我們可用數值結果來展示我們所提出的方法的優異性。
關鍵字:特徵結構指定、線性指數二次高斯法、迴路轉移函數法

Abstract
In this thesis, both EigenStructure Assignment (ESA) and Linear Exponential Quadratic Gaussian and Loop Transfer Recovery (LEQG/LTR) techniques are unified and applied for the design of a spinning type satellite with Double Gimbals Single Rotor-Control Moment Gyro (DGSR-CMG). For a multivariable system, the response is characterized by both eigenvalues and eigenvector. In addition, the optimal control gain obtained by the LEQG/LTR method can take the covariance of both system and measurement noises into consideration, the proposed method is more robust. By the combination of both ESA and LEQG/LTR control design methods, the control system can simultaneously provide prescribed stability and optimal performance. This paper also derives the algorithms that can take all the time domain, frequency domain, and robust decoupling design techniques into a unified method. Finally, numerical results will show that the proposed method is more robust to disturbance, sensor noise, and parameter variations. In addition, the time domain responses are also better.
Keywords: EigenStructure Assignment, Linear Exponential Quadratic Gaussian, Loop Transfer Recovery

目 錄
誌謝……………………………………………………………………………Ⅰ
中文摘要………………………………………………………………………Ⅱ
英文摘要………………………………………………………………………Ⅲ
目錄……………………………………………………………………………Ⅳ
圖目錄…………………………………………………………………………Ⅵ
表目錄…………………………………………………………………………Ⅷ
符號說明………………………………………………………………………Ⅸ
第一章 緒論…………………………………………………………………1
1.1 研究動機…………………………………………………………1
1.2 文獻回顧…………………………………………………………2
1.3 論文架構…………………………………………………………………3
第二章 最佳化理論基礎…….………………………………………………5
2.1 最佳控制LQR之理論基礎…………………………………………5
2.2 LQR的通解…………………………………………………………6
2.3 LQR的穩態解……………………………………………………………8
2.4 Kalman filter最佳估測之理論………………………………………10第三章 LQG/LTR理論………………………………………………………15
3.1 LQG理論…………………………………………………………15
3.2 最佳狀態迴授的性能與強健性………………………………………18
第四章 線性指數二次式高斯及迴路轉移函數回歸法之公式推導.22
4.1 問題定義與公式推導……………………………………………22
4.2 LEQG和LEQG/LTR之公式推導……………………………………28
第五章 特徵結構指定………………………………………………………33
5.1 特徵結構指定設計方法…………………………………………33
5.2 結合特徵結構指定線性指數二次高斯及迴路轉移回歸法……36
5.3 衛星姿態控制器設計與模擬結果………………………………37
第六章 結論與建議…………………………………………………………56
參考文獻………………………………………………………………………57

參考文獻
[1] Klein, G. and Moore, B. C., “Eigenvalue - Generalized Eigenvector Assignment with State Feedback”, IEEE Transactions on Automatic Control, AC-22, pp. 140-141, 1977.
[2] Harvey, C. A. and Stein, G., “Quadratic Weights for Asymptotic Regulator Properties”, IEEE Transactions on Automatic Control, AC-23, pp. 378-387, 1978.
[3] Stein, G., “Generalized Quadratic Weights for Asymptotic Regulator Properties”, IEEE Transactions on Automatic Control, AC-24, pp. 559-566, 1979.
[4] Fahmy, M. M. and O'Reilly, J., “On Eigenstructure Assignment in Linear Multivariable System”, IEEE Transactions on Automatic Control, AC-27, pp.690-693, 1982.
[5] Andry, A. N., Shapiro, E. Y., and Chung, J. C., “Eigenstructure Assignment for Linear system”, IEEE Transactions on Aerospace and Electronic Systems, AES-19, pp. 711-729,1983.
[6] Sobel, K. M. and Shapiro, E. Y., ”Eigenstructure Assignment: A Tutorial - Part I Theory and Part II Applications”, in Proceedings American Control Conference, pp.456-467, 1985.
[7] Jacobson, D. H., “Optimal Stochastic Linear Systems with Exponential Performance Criteria and Their Relation to Deterministic Differential Games”, IEEE Transactions on Automatic Control, AC-18, pp. 124-131, 1973.
[8] Speyer, J. L., Deyst, J. J., and Jacobson, D. H., “Optimization of Stochastic Linear Systems with Additive Measurement and Process Noise Using Exponential Performance Criteria”, IEEE Transactions on Automatic Control, AC-19, pp. 358-366, 1974.
[9] Bensoussan, A. and Van Schuppen, J. H., “Optimal Control of Partially Observable Stochastic Systems with an Exponential-of-Integral Performance Index”, SIAM Journal Control and Optimization, 23, pp. 599-613, 1985.
[10] Lin, J. M., “System Design by Linear Exponential Quadratic Gaussian and Loop Transfer Recovery Methodology”, AIAA Journal of Guidance, Control, and Dynamics, pp. 189-192, 1995.
[11] Lin, J. M., “Bank-to-Turn Optimal Guidance with Linear Exponential Gaussian Performance Criterion”, AIAA Journal of Guidance, Control, and Dynamics, pp. 951-958, 1995.
[12] Lin, J. M., Chang, C. H., and Tsai, H. L., “Game Theoretical Control System Design by LEQG/LTR Method”, Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 28, pp. 47-58, 1996.
[13] Lin, J. M., Chang, C. H., and Tsai, H. L., “Optimal Trajectory Tracking System Design by LEQG/LTR Method”, Journal of the Chinese Institute of Electrical Engineering, Vol. 4, pp. 15-26, 1997.
[14] Doyle, J. C. and Stein, G., “Multivariable Feedback Design: Concepts for a Classical / Modern Synthesis”, IEEE Transaction on Automatic Control, AC-26, pp. 4-16, 1981.
[15] Iyer, A. and Singh, S. N., “MFDs of Spinning Satellite and Attitude Control Using Gyrotorquers”, IEEE Transactions Aerospace and Electronic Systems, 25, pp. 611-620, 1989.
[16] Maciejowski, J. M., Multivariable Feedback Design, Addition-Wesley Publishing Co. Chap.5, 1989.
[17] Anderson, B. D. O. and Moore, J. B., Optimal Control :Linear Quadratic Methods, Prentice-Hall International, Inc., pp. 139-163, 1990.
[18] Franklin G. F. and Powell J. D. Digital Control of Dynamic System Reading MA:Addison-Wesley(1980).
[19] Special Issue on the LQG Problem, IEEE Transactions on Automatic Control, AC-16, pp.527-869(1971).
[20] M. Tadjine, A. Tayebi, and A. Rachid,” On robust LQG/LTR control design, ” IEEE Transactions on Automatic Control, pp.4772-4773, 1996.
[21] Ridegly D.B. et.al.,” Linear-Quadratic-Gaussian with Loop-Transfer- Recovery Methodology for Unmanned Aircraft,” J. Guidance, pp. 82-89, Jan.- Feb. 1987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top