跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪珮媛
研究生(外文):Pei-Yuan Hung
論文名稱:應用openEHR臨床指引定義語言建立慢性腎臟病臨床診療指引
論文名稱(外文):Building a Clinical Guideline for Chronic Kidney Disease using openEHR's Guideline Definition Language
指導教授:劉德明劉德明引用關係
指導教授(外文):Der-Ming Liou
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學資訊研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:71
中文關鍵詞:臨床診療指引電腦化指引openEHR原型臨床指引定義語言
外文關鍵詞:Clinical practice guidelineopenEHRArchetypeGDL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
研究背景
醫療照護品質日益受到重視,臨床診療指引為提升醫療品質的一種方式,使用臨床診療指引有助於改善臨床結果。為了使臨床診療指引能發揮最大的效益,必須結合照護流程以提供病患具體診斷建議。然而當臨床指引仍以紙本為基礎時,由於內容太過冗長不易閱讀,造成在臨床環境中執行過程充滿障礙。因此透過指引電子化讓電腦可以直接讀取指引的內容以及進行編譯執行,有助於與醫療資訊系統整合。研究顯示電子臨床指引可促進指引的利用和改善臨床結果,為了能更加有效利用臨床診療指引,因此電子化臨床指引的研究顯得更加重要。
研究目的
長久以來醫學資訊領域面臨缺乏將電子臨床指引與電子病歷系統整合標準。openEHR規範是由openEHR組織制定的一套開放的醫療衛生資訊標準規範,由澳大利亞Ocean Informatics公司和倫敦大學所共同發展推動,其發展了藉由原型方式定義臨床知識,以及應用臨床指引定義語言的方式來建構臨床指引,此方式可促進語義的互通。因此本研究目的為應用openEHR臨床指引定義語言建立電腦化臨床指引,並且利用原型方法建立指引中的臨床概念。

研究方法
本研究流程劃分為三個階段:第一個階段為組織、整理臨床診療指引和辨認指引中的臨床概念,這裡我們採用慢性腎臟病貧血診療指引做為材料;第二階段為搜尋現有以及建立新的原型;第三階段應用臨床指引定義語言建立電腦化臨床診療指引和驗證,最後也進行焦點訪談以深入了解其應用可行性。
結果
本研究採用慢性腎臟病貧血診療指引,共發展10個臨床指引定義語言,這些指引中包含有11個已上線公開發表並可重複使用的原型,以及12個為新建原型。並且以焦點團體法訪談了16位醫師和22位資訊人員,經由資料分析整理出兩個面向:知識和資訊分離的看法和於現行資訊系統建制的可行性。
結論
本研究應用了臨床指引定義語言方法建立慢性腎臟病貧血診療指引,並且以原型定義指引中的臨床知識。達成將臨床診療指引電子化並且符合openEHR醫療資訊標準,期望研究結果未來能促使電子臨床指引與電子病歷系統的整合。

Background
Quality of medical care has been gaining more and more attention in the past years. Application of Clinical practice guidelines are a useful way to improve the quality of care. To make it more effective, we need clinical practice guidelines incorporate medical procedures, enabling us to offer a diagnosis of the patient. However, it is not easy to read the paper guidelines, because it is full of obstacles in a clinical setting. Therefore, it would be more useful for integrating medical informatics systems by using the computer-based clinical guidelines. Previous studies have shown that computer-based guidelines can improve clinical outcomes significantly. To make effective use of clinical practice guidelines, principles of computer-based research becomes even more important nowadays.
Aim
For long, the medical informatics domain has lacked a clinical standard for adequately integrating EHR with the computer-based clinical guideline. openEHR is an open standard specification in health informatics established by the University College London and Ocean Informatics Pty Ltd from UK and Australia corporately. They developed the archetype to represent clinical knowledge and used Guideline Definition Language (GDL) to express clinical guideline. In this way they enhance the interoperability of semantic. Our aim is to build clinical practice guideline using openEHR technology including archetypes and GDL.
Method
There were three stages in this study. The first stage focused on organizing the clinical guideline as well as identifying the clinical concepts and rules within it. We used Chronic Kidney Disease (CKD) guideline as material. The second stage was to search for the existing archetype and develop the new archetype. The last stage was to model guideline and validation. A focus group discussion was conducted for better understand the feasibility of GDL.
Result
Ten CKD anemia guidelines were represented by GDL. These computer-based guidelines were based on 11 public archetypes and 12 newly created archetypes. We carried out a focus group study with 16 physicians and 22 IT staffs. After discussion we sorted out two topics. One is about separates the opinion of knowledge from information; another is about feasibility of GDL into information system.
Conclusion
This study utilized openEHR guideline definition language to build the clinical practice guideline of chronic kidney disease. Using archetype and GDL to represent the guidelines as well as clinical knowledge within it. The result of this study can be a foundation for the integration of EHR and the computer-based clinical guideline.


目錄
誌謝 i
摘要 iii
Abstract v
目錄 viii
圖目錄 x
表目錄 xi
縮寫表 xii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究架構 3
第二章 背景 5
第一節 慢性腎臟病貧血臨床診療指引 5
第二節 臨床診療指引 6
一、 簡介臨床診療指引 6
二、 電腦化臨床指引 8
第三節 openEHR規範 10
一、 openEHR簡介 10
二、 臨床指引定義語言簡介 16
第三章 文獻探討 21
第一節 電子臨床指引知識建模之探討 21
一、 以本體論方法 21
二、 以openEHR方法 22
三、 本體論和openEHR之區分 23
第二節 相關臨床指引定義語言應用研究 25
第四章 研究方法 27
第一節 研究材料 27
第二節 臨床指引建立方法 28
一、 階段一:整理貧血臨床指引和辨認臨床概念 28
二、 階段二:原型的建立 30
三、 階段三:建立臨床指引定義語言規則和驗證 32
第三節 評估方法 37
第五章 結果與評估 39
第一節 電腦化臨床指引結果 39
第二節 焦點團體評估結果 41
一、 醫師問卷資料分析 41
二、 資訊人員問卷資料分析 44
第六章 討論與結論 48
第一節 臨床指引定義語言建立議題 48
第二節 焦點訪談回饋 50
第三節 研究限制和未來展望 51
第四節 結論 51
參考文獻 53
附錄一、原型 59
附錄二、臨床情境 62
附錄三、臨床指引定義語言 64
附錄四、醫師訪談問卷 66
附錄五、資訊人員訪談問卷 68
附錄六、訪談資料 70
附錄七、臨床指引定義語言檔案 71
圖目錄
圖 2 1 openEHR雙層建模[33] 12
圖 2 2 組成(Composition)資訊模型結構 12
圖 2 3 Entry類結構[38] 13
圖 2 4 臨床診療過程[40] 13
圖 2 5 原型定義語言結構[41] 15
圖 2 6 臨床指引定義語言結構[45] 18
圖 2 7 臨床指引定義語言結構(definition)[45] 19
圖 2 8 臨床指引定義語言結構(rule)[45] 20
圖 2 9 臨床指引定義語言結構(ontology)[45] 20
圖 3 1 Heart rate於本體論和原型的結構[58] 24
圖 4 1 研究流程 28
圖 4 2 Folate原型 33
圖 4 3 Diagnosis of anemia 33
圖 4 4 引入的原型 34
圖 4 5 指引規則 35
圖 4 6 設定規則 35
圖 4 7 執行畫面 36
圖 4 8 驗證流程 36
圖 5 1 Diagnosis of aenmia執行結果 40
圖 5 2 Frequency of testing for anemia執行結果 41
表目錄
表 3 1 openEHR和Ontology比較 25
表 5 1 Archetype state 39
表 5 2 受訪者基本資料(醫師) 42
表 5 3 臨床指引了解程度(醫師) 43
表 5 4 訪談內容(醫師) 44
表 5 5 受訪者基本資料(資訊人員) 45
表 5 6 臨床指引了解程度(資訊人員) 46
表 5 7 訪談內容(資訊人員) 46


參考文獻
[1] "國民健康署-慢性腎臟病," http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&;menu_id=1027&;webdata_id=4565.
[2] J. J. Ofman, E. Badamgarav, J. M. Henning, K. Knight, A. D. Gano Jr, R. K. Levan, et al., "Does disease management improve clinical and economic outcomes in patients with chronic diseases? A systematic review," The American journal of medicine, vol. 117, pp. 182-192, 2004.
[3] R. M. Abarbanel, N. Beard, J. R. Campbell, J. I. Glasgow, S. M. Huff, J. G. Mansfield, et al., "The SAGE Project: A Universal Framework for Sharing Health Knowledge in the Form of Computable Clinical Practice Guidelines."
[4] M. J. Field and K. N. Lohr, Guidelines for Clinical Practice: From Development to Use: National Academies Press, 1992.
[5] D. S. Cannon and S. N. Allen, "A comparison of the effects of computer and manual reminders on compliance with a mental health clinical practice guideline," Journal of the American Medical Informatics Association, vol. 7, pp. 196-203, 2000.
[6] T. Oliveira, P. Novais, and J. Neves, "Representation of clinical practice guideline components in OWL," in Trends in Practical Applications of Agents and Multiagent Systems, ed: Springer, 2013, pp. 77-85.
[7] M. Peleg, "Computer-interpretable clinical guidelines: A methodological review," Journal of Biomedical Informatics, vol. 46, pp. 744-763, 8// 2013.
[8] A. Latoszek-Berendsen, H. Tange, H. Van Den Herik, and A. Hasman, "From clinical practice guidelines to computer-interpretable guidelines. A literature overview," Methods of information in medicine, vol. 49, pp. 550-570, 2009.
[9] G. Silva, "Exploring clinical guidelines and the representation of their clinical statments using openEHR," 2011.
[10] "openEHR," http://www.openehr.org/home.
[11] R. Chen, P. Georgii-Hemming, and H. Åhlfeldt, "Representing a chemotherapy guideline using openEHR and rules," in MIE, 2009, pp. 653-657.
[12] N. Anani, R. Chen, M. T. Prazeres, and S. Koch, "OpenEHR-based representation of guideline compliance data through the example of stroke clinical practice guidelines," Studies in health technology and informatics, vol. 180, pp. 487-491, 2011.
[13] "Guideline Definition Language (GDL)," http://www.openehr.org/news_events/releases.php?id=79.
[14] "KIDNEY DISEASE | IMPROVING GLOBAL OUTCOMES," http://kdigo.org/home/.
[15] "THE NATIONAL KIDNEY FOUNDATION KIDNEY DISEASE OUTCOMES QUALITY INITIATIVE (NKF KDOQI )," https://http://www.kidney.org/professionals/KDOQI.
[16] "ANEMIA IN CKD," http://kdigo.org/home/guidelines/anemia-in-ckd/.
[17] M. J. Field and K. N. Lohr, Clinical Practice Guidelines: Directions for a New Program vol. 90: National Academies Press, 1990.
[18] E. Steinberg, S. Greenfield, M. Mancher, D. M. Wolman, and R. Graham, Clinical practice guidelines we can trust: National Academies Press, 2011.
[19] P. Barahona, F. Azevedo, M. Veloso, N. Estêvão, and R. Gallego, "Computerising a guideline for the management of diabetes," International journal of medical informatics, vol. 64, pp. 275-284, 2001.
[20] P. Elkin, M. Peleg, R. Lacson, E. Bernstam, S. Tu, A. Boxwala, et al., "Toward standardization of electronic guideline representation," Md Computing, vol. 17, pp. 39-44, 2000.
[21] D. Hart, "Risk management, clinical guidelines, clinical pathways and health law," ed: HeinOnline, 2003.
[22] R. Lenz, R. Blaser, M. Beyer, O. Heger, C. Biber, M. Bäumlein, et al., "IT support for clinical pathways—Lessons learned," International Journal of Medical Informatics, vol. 76, pp. S397-S402, 2007.
[23] F. Rutten, W. Brouwer, and L. Niessen, "Practice guidelines based on clinical and economic evidence," The European Journal of Health Economics, vol. 6, pp. 91-93, 2005.
[24] A. Ten Teije, M. Marcos, M. Balser, J. van Croonenborg, C. Duelli, F. van Harmelen, et al., "Improving medical protocols by formal methods," Artificial intelligence in medicine, vol. 36, pp. 193-209, 2006.
[25] S. H. Woolf, R. Grol, A. Hutchinson, M. Eccles, and J. Grimshaw, "Potential benefits, limitations, and harms of clinical guidelines," Bmj, vol. 318, pp. 527-530, 1999.
[26] G. LoBiondo-Wood, "Systematic Reviews and Clinical Practice Guidelines," Nursing Research: Methods and Critical Appraisal for Evidence-Based Practice, p. 218, 2013.
[27] B. P. Loveday, S. Srinivasa, R. Vather, A. Mittal, M. S. Petrov, A. R. Phillips, et al., "High quantity and variable quality of guidelines for acute pancreatitis: a systematic review," The American journal of gastroenterology, vol. 105, pp. 1466-1476, 2010.
[28] P. De Clercq, K. Kaiser, and A. Hasman, "Computer-interpretable guideline formalisms," Studies in health technology and informatics, vol. 139, p. 22, 2008.
[29] D. L. Hunt, R. B. Haynes, S. E. Hanna, and K. Smith, "Effects of computer-based clinical decision support systems on physician performance and patient outcomes: a systematic review," Jama, vol. 280, pp. 1339-1346, 1998.
[30] D. Wang, M. Peleg, S. W. Tu, A. A. Boxwala, R. A. Greenes, V. L. Patel, et al., "Representation primitives, process models and patient data in computer-interpretable clinical practice guidelines: A literature review of guideline representation models," International Journal of Medical Informatics, vol. 68, pp. 59-70, 2002.
[31] 何雨生 and 孫宏宇, "計算機化臨床實踐指南研究進展," 中國數字醫學 ISTIC, vol. 2, 2007.
[32] J. Choi, L. M. Currie, D. Wang, and S. Bakken, "Encoding a clinical practice guideline using guideline interchange format: A case study of a depression screening and management guideline," International Journal of Medical Informatics, vol. 76, Supplement 2, pp. S302-S307, 10// 2007.
[33] L. Bird, A. Goodchild, and Z. Z. Tun, "Experiences with a two-level modelling approach to electronic health records," Journal of Research and Practice in Information Technology, vol. 35, pp. 121-138, 2003.
[34] D. Kalra, T. Beale, and S. Heard, "The openEHR foundation," Studies in health technology and informatics, vol. 115, pp. 153-173, 2005.
[35] H. Leslie, "openEHR-The World’s Record," Pulse+ IT Magazine, 2007.
[36] S. Heard and T. Beale, "OpenEHR Architecture Overview," Tech. Rep., OpenEHR, 2007, http://www. openehr. org/releases/1.0. 1/architecture/overview. pdf2007.
[37] H. Leslie and S. Heard, "Archetypes 101," HIC 2006 and HINZ 2006: Proceedings, p. 18, 2006.
[38] M. Argüello Casteleiro, J. Des, M. J. F. Prieto, R. Perez, and H. Paniagua, "Executing medical guidelines on the web: Towards next generation healthcare," Knowledge-Based Systems, vol. 22, pp. 545-551, 2009.
[39] T. Beale and S. Heard, "An ontology-based model of clinical information," in Medinfo 2007: Proceedings of the 12th World Congress on Health (Medical) Informatics; Building Sustainable Health Systems, 2007, p. 760.
[40] H. Leslie, "Designing Archetypes," Ocean Informatics, 2011.
[41] T. Beale and S. Heard, "Archetype Definition Language ADL 1.4," London: openEHR Foundation, 2008.
[42] C. Ma, H. Frankel, T. Beale, and S. Heard, "EHR query language (EQL)-a query language for archetype-based health records," Studies in health technology and informatics, vol. 129, p. 397, 2007.
[43] M. Braun, A. U. Brandt, S. Schulz, and M. Boeker, "Validating archetypes for the Multiple Sclerosis Functional Composite," BMC medical informatics and decision making, vol. 14, p. 64, 2014.
[44] "openEHR Clinical Knowledge Manager," http://www.openehr.org/ckm/.
[45] "GDL Specifications," https://github.com/openEHR/gdl-tools/blob/master/cds/docs/specs/gdl-specs.pdf?raw=true.
[46] "CHADS2 score," http://en.wikipedia.org/wiki/CHADS2_score - CHA2DS2-VASc.
[47] "JBoss Drools," http://www.drools.org.
[48] "GDL Editor," http://sourceforge.net/projects/gdl-editor/.
[49] T. R. Gruber, "A translation approach to portable ontology specifications," Knowledge acquisition, vol. 5, pp. 199-220, 1993.
[50] D. Fensel, "Ontologies: A Silver Bullet for Knowledge Management and Electronic Management," ed: Springer, Berlin, 2001.
[51] D. L. McGuinness and F. Van Harmelen, "OWL web ontology language overview," W3C recommendation, vol. 10, p. 2004, 2004.
[52] M. A. Casteleiro and J. J. Des Diz, "Clinical practice guidelines: A case study of combining OWL-S, OWL, and SWRL," Knowledge-Based Systems, vol. 21, pp. 247-255, 2008.
[53] E. Hovenga, S. Garde, and S. Heard, "Nursing constraint models for electronic health records: a vision for domain knowledge governance," International journal of medical informatics, vol. 74, pp. 886-898, 2005.
[54] S. Garde, E. Hovenga, J. Buck, and P. Knaup, "Expressing clinical data sets with openEHR archetypes: a solid basis for ubiquitous computing," Int J Med Inform, vol. 76 Suppl 3, pp. S334-41, Dec 2007.
[55] M. B. Spath and J. Grimson, "Applying the archetype approach to the database of a biobank information management system," Int J Med Inform, vol. 80, pp. 205-26, Mar 2011.
[56] 陳志傑, "運用網路本體語言(OWL)技術建構藥品適應症諮詢系統之研究-以腸胃科用藥為例," 碩士, 醫學資訊研究所, 臺北醫學大學, 台北市, 2012.
[57] J. Buck, S. Garde, C. D. Kohl, and P. Knaup-Gregori, "Towards a comprehensive electronic patient record to support an innovative individual care concept for premature infants using the openEHR approach," International Journal of Medical Informatics, vol. 78, pp. 521-531, 8 2009.
[58] A. K. Sari, W. Rahayu, and M. Bhatt, "Archetype sub-ontology: Improving constraint-based clinical knowledge model in electronic health records," Knowledge-Based Systems, vol. 26, pp. 75-85, 2012.
[59] R. Chen, C. Valladares, I. Corbal, N. Anani, and S. Koch, "Early Experiences from a Guideline-based Computerized Clinical Decision Support for Stroke Prevention in Atrial Fibrillation," Studies in health technology and informatics, vol. 192, pp. 244-247, 2012.
[60] N. Anani, R. Chen, T. P. Moreira, and S. Koch, "Retrospective checking of compliance with practice guidelines for acute stroke care: a novel experiment using openEHR's Guideline Definition Language," BMC medical informatics and decision making, vol. 14, p. 39, 2014.
[61] K. Engblom, "Applying openEHR and GDL for streamlining the process between screening and reporting to quality registries–the case of familial hypercholesterolemia."
[62] A. S. Levey, L. A. Stevens, C. H. Schmid, Y. L. Zhang, A. F. Castro, H. I. Feldman, et al., "A new equation to estimate glomerular filtration rate," Annals of internal medicine, vol. 150, pp. 604-612, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top