跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張良豪
研究生(外文):Liang-Hao Chang
論文名稱:自主駕控機器人之自評自調控制器之設計法
論文名稱(外文):Design of Adaptive Critic Controller for Autonomous Driving of a Wheeled Mobile Robot
指導教授:林巍聳
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:62
中文關鍵詞:自主控制適應性評價
外文關鍵詞:autonomous navigationadaptive critic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前對於輪式行動機器人動態模式的研究大都假設在輪子純轉動的條件下,也就是必須考慮沒有滑動的情形,而我們的研究主要是針對輪式行動機器人在泥濘的路面上行走所產生的效應,則不得不考慮滑動的影響。主要的工作為推導在考慮路面條件下機器人的數學模型,以及發展一個具有評斷機制與學習的控制器,整個控制器的架構包含一個模糊姿態控制器和一個自評自調速度控制器。而姿態控制器根據姿態誤差經由經驗法則而產生一組速度命令以減少姿態的誤差。而速度控制器可在未知路面情況下根據自我學習與最佳化的能力而使得受控系統的速度反應能追隨期望的速度命令。利用電腦模擬,藉由輪式行動機器人行走在多個泥濘的路上驗證我們所提出的控制架構。而結果顯示自評自調控制器可成功的在未知的路面情況的條件下運用。
Previous researches on dynamic behavior about the wheeled mobile robot are mostly assuming a purely rolling case, i.e. no slipping. Instead, this research focuses on the wheeled mobile robot moving on muddy surface, on which the wheels may slip. The main contributions are deriving the mathematical model of the robot taking the road condition into consideration and developing the controller based on adaptive critic design. The controller is composed of a fuzzy posture controller and an adaptive critic velocity controller. The posture controller adopts posture error as inputs and produces desired velocities by fuzzy logic inference. The adaptive critic velocity controller conducts the linear and angular velocities with the capabilities of self-learning and optimization in response to unknown road condition and unmodeled nonlinearity. By computer simulation, the proposed design has been verified carefully by driving the wheeled mobile robot on variant muddy surface. The results show that the proposed adaptive critic velocity controller is a successful design to comply with unknown road conditions.
List of contents
Chapter 1 Introduction 1
1.1 Motivation and Objective 1
1.2 Literature Survey 3
1.2.1 Constraint System 3
1.2.2 Adaptive Critic Design 5
1.3 Contribution 8
1.4 Organization of Thesis 9
Chapter 2 Model of A Wheeled Mobile Robot Moving on Muddy Surface 11
2.1 The architecture of the target WMR 11
2.2 Wheel Rolling Motion 13
2.3 Model of the target WMR moving on muddy surface 14
Chapter 3 Adaptive Critic Design of the WMR Control System 24
3.1 Architecture of the WMR control system 24
3.2 Adaptive critic design of the velocity controller 25
3.2.1 Adaptive critic design 25
3.2.2 Updating process 26
3.2.3 The Architecture of adaptive critic velocity controller 27
3.2.4 The utility function 28
3.2.5 The action neural network 28
3.2.6 The critic neural network 29
3.2.7 The Approximation Model 31
3.2.8 Training algorithm of the adaptive critic velocity controller 32
3.3 The fuzzy based posture controller 34
3.3.1 Basics of fuzzy control 34
3.3.2 Fuzzy based posture controller 35
Chapter 4 Simulation Results 38
4.1 The Objective and environment of the Simulation 38
4.2 Preliminary training of the adaptive critic velocity controller 38
4.2.1 Test the self-learning from scratch 39
4.2.2 Test the performance of the adaptive critic velocity controller by tracking an arbitrary velocity command 43
4.2.3 Test the performance in acceleration, deceleration and constant velocity 46
4.3 Comparison of the adaptive critic and fuzzy based velocity controllers in trajectory tracking. 47
4.3.1 Autonomous navigation performing a left turn in case 1&2 48
4.3.2 Adaptation in Various Road Conditions. 54
Chapter 5 Conclusions 58
Reference: 59
[Bertsekas, 1987] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochasic Models, Prentice-Hall 1987.
[Boctor, 1997]Stalin A. Boctor, Peter F. Ryff, Peter D. Hiscocks, Mohamed T. Ghorab, and Michael R. Holmes, Electrical Concepts and Applications, West Publishing Company, Minneapolis/St. Paul, p.782, 1997.
[Colbaugh, 1998] R. Colbaugh, E. Barany, and K. Glass, “Adaptive Control of Nonholonomic Robotic Systems,” Journal of Robotic Systems, vol. 15, no. 7, pp. 365-393, 1998.
[Fierro, 1995] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot: backstepping kinematics into dynamics,” Procceedings of the 34th Conference on Decision and Control, pp. 3805-3810, 1995.
[Fierro, 1998] R. Fierro, and F.L. Lewis ,” Control of a nonholonomic mobile robot using neural networks,” IEEE Transactions on Neural Networks, Vol. 9, pp. 589 -600, Jul 1998.
[Greenwood, 1988] D. T. Greenwood, Principles of Dynamics, Prentice-Hall, 1988
[Kanayama, 1990] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, ” A stable tracking control method for an autonomous mobile robot,” IEEE International Conference on Robotics and Automation, vol.1, pp. 384 -389, 1990.
[Kanayama, 1990] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, ” A stable tracking control method for an autonomous mobile robot,” IEEE International Conference on Robotics and Automation, vol.1, pp. 384 -389, 1990.
[Kozlowski, 2002] K. Kozlowski and J. Majchrzak, ” A backstepping approach to control a nonholonomic mobile robot,” Proceedings. ICRA ''02. IEEE International Conference on Robotics and Automation, vol. 4, pp. 3972 -3977, 2002.
[Lee, 1997] S. Lee, T. M. Adams, and B. Ryoo,” A fuzzy navigation system for mobile construction robots,” Automation in Construction, vol. 6, pp. 97-107, 1997.
[Lee, 1999] T.H. Lee, F.H.F. Leung, and P.K.S. Tam, ” Position control for wheeled mobile robots using a fuzzy logic controller,” IECON ''99 Proceedings. The 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, pp. 525 -528, 1999.
[Lendaris ,1997]Lendaris,G., C. Paintz, and T. Shannon, 1997, “More on Training Strategies for Critic and Action Neural Nets in Dual Heuristic Programming Method”, in PROC of IEEE-SMC’97, Orlando, IEEE, October.
[Lendaris ,1998]Lendaris, G. and T. Shannon, 1998, “Application Considerations for the DHP Methodology,” in PROC of International Joint Conference on Neural Networks--IJCNN’98, Anchorage, IEEE, pp 1013-1018.
[Lewis, 1993] F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot Manipulators, New York: MacMillan, 1993.
[Lin, 2005] Wei-Song Lin, Chin-Lung Huang, Ming-Kang Chuang, “Hierarchical Fuzzy Control for Autonomous Navigation of Wheeled Robots," IEE Proceedings Control Theory & Applications, 2006, to appear
[Lin, 2004] Wei-Song Lin, Chin-Lung Huang, Ming-Kang Chuang and Ghing-Chieh Liu, “Modeling a wheeled mobile robot for autonomous navigation design,” IASTED International Conference on Modeling, Identification and Control, pp. 275-280, Grindelwald, Switzerland, Feb. 2004
[Park, 2001] K.H. Park, S.B. Cho, Y.W. Lee, ” Optimal tracking control of a nonholonomic mobile robot,” Proceedings. ISIE 2001. IEEE International Symposium on Industrial Electronics, vol. 3, pp. 2073 -2076, 2001.
[Pawlowski, 2001] S. Pawlowski, K. Kozlowski,and W. Wroblewski, “Fuzzy logic implementation in mobile robot control,” Proceedings of the Second International Workshop on Robot Motion and Control, pp. 65 -70, 2001.
[Prokhorov, 1997] D. Prokhorov and D. Wunsch, “Adaptive Critic Designs,” IEEE Transactions On Neural Networks, vol 8(5), pp 997-1007, 1997
[Prokhorov, 1998] D. Prokhorov and L. Feldkamp, “Analyzing for Lyapunov stability with adaptive critics,” IEEE Trans. Systems, Man, and Cybernetics, vol. 2, pp. 1658-1661, 1998
[Sutton,1984]Sutton, R.S., 1984, Temporal Aspects of Credit Assignment in Reinforcement Learning, Ph.D. dissertation, University of Massachusetts.
[Tsai, 2002] P. S. Tsai, T. F. Wu, F. R. Chang, and L. S. Wang, ”Tracking Control of Nonholonomic Mobile Robot Using Hybrid Structure,” The 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida, 2002.
[Werbos, 1992] P.J. Werbos, “Approximate Dynamic Programming for Real-Time Control and Neural Modeling,” Chapter 13 in [White & Sofge, 1992].
[Yun, 1993] X. Yun, and Y. Yamamoto, “Internal Dynamics of a Wheeled Mobile Robo,” Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1288-1293, 1993.
[Zadeh, 1965] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp.338-353,1965
[Zadeh, 1973] L.A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Systems, Man, and Cybernetics, vol. 3, pp. 28-44, January 1973.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文