跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文科
研究生(外文):Huang Wen Ko
論文名稱:噴淋法製備奈米碳螺旋線圈
論文名稱(外文):Production of Carbon Nanocoil Using A Spray Pyrolysis Chemical Vapor Deposition Method
指導教授:劉益銘
口試委員:劉益銘葛明德蒲念文李元堯游孟潔
口試日期:2013-06-25
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:奈米碳螺旋線圈噴淋法奈米鈀觸媒
外文關鍵詞:carbon nano-coilspray pyrolysis chemical vapor depositionnano palladium catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用噴淋式化學氣相沉積法增加奈米碳螺旋線圈的生產產量,而此種方法相較於一般化學氣相沉積法擁有相當多的優勢,例如:製程簡單、可連續式生長、奈米碳材產量增加、等待加溫爐升降溫時間減少等等優點,對於奈米碳材於工業上的發展與應用有相當大的研究價值。
實驗的方法主要分為三個部份,第一部份是使用水平式CVD,以兩種不同粉體基材(矽、鎳)添加奈米鈀催化劑,進行成長奈米碳螺旋線圈,觀察表面形貌與結構是否有所差異。第二部份是將矽粉做為奈米鈀觸媒的載體,以噴淋式CVD的方式進行奈米碳螺旋線圈成長,並研究不同溫度與乙炔流量的實驗,觀察表面形貌與結構是否有所改變。第三部份是直接噴淋鈀奈米觸媒成長,觀察溫度對於成長出來的奈米碳材表面形貌影響,並改變乙炔流量觀察產量是否有所提升,研究結果顯示,在氬氣5 l/min、氫氣100 sccm、乙炔100 sccm、鈀催化劑濃度(Pd)100 ppm,製程溫度為600℃可以得到產量最多的奈米碳螺旋線圈。

Using a spray pyrolysis chemical vapor deposition (SPCVD) method to increase the yield of nano-carbon coils (CNCs) growth was studied in this thesis. Compared with the general chemical vapor deposition (CVD), this method has many advantages such as simple process, continuous reaction, higher yield and reduced heating and cooling time. It possesses high research value for the development and application of carbonaceous nano-materials to the industry.
This thesis contains three main parts. The first part used two different powder substrates(Si、Ni) dipped with nano palladium catalysts to grow CNCs with the general horizontal CVD furnace. The morphologies and structures of the CNCs were observed and analyzed. In the second part of this thesis, nano-silicon-powder substrates dipped with nano palladium catalysts were used to grow CNCs with SPCVD. The effects of different temperature and acetylene flow rate on the surface morphology and structural of grown CNCs have been evaluated. The third part directly sprayed with nano palladium catalysts in the SPCVD chamber to grow CNCs. The effect of growing temperature on the CNC morphology was observed. The effect of acetylene flow rate on the CNC yield was also evaluated. The results show that the highest CNC yield can be achieved with the adequate process parameters such as the argon flow rate of 5000 sccm, the hydrogen flow rate of 100 sccm, the concentration of palladium catalyst of 100 ppm and the growth temperature of 600 ℃.

目錄
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xii
1. 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
2. 文獻回顧及發展簡介 4
2.1 奈米碳管的發展 4
2.2 奈米碳螺旋線圈發展 5
2.3 觸媒製備方式 8
2.3.1 物理法 9
2.3.2 化學法 11
2.4 奈米碳螺旋線圈製備方法 13
2.4.1 基體法 14
2.4.2 噴淋法 15
2.4.3 流體化床法 15
2.5 奈米碳螺旋線圈成長機製與應用 17
2.5.1奈米碳螺旋線圈成長理論 17
2.5.2奈米碳螺旋線圈應用 22
3. 研究方法與設備 26
3.1 研究流程 26
3.2 研究方法 27
3.2.1載體製備 27
3.2.2觸媒製備 27
3.2.3化學氣相沉積法合成奈米碳螺旋線圈 28
3.3 研究設備 29
3.3.1化學氣相沉積設備 29
3.3.2檢測分析儀器 31
4. 結果與討論 33
4.1 水平式CVD成長奈米碳螺旋線圈於不同基材 33
4.1.1以微米鎳粉體(Ni)搭載鈀奈米鈀觸媒成長奈米碳材 34
4.1.2以微米矽粉體(Si)搭載鈀奈米鈀觸媒成長奈米碳材 37
4.1.3小結 40
4.2 噴淋式CVD使用Pd/Si微粒成長奈米碳螺旋線圈 40
4.2.1不同成長溫度對於Pd/Si微粒成長奈米碳螺旋線圈之影響 42
4.2.2不同乙炔流量對於Pd/Si微粒成長奈米碳螺旋線圈之影響 46
4.2.3小結 48
4.3 噴淋奈米Pd觸媒微粒製備奈米螺旋線圈 48
4.3.1溫度對於噴淋奈米鈀觸媒製備奈米碳螺旋線圈之影響 49
4.3.2改變乙炔流量對於噴淋奈米鈀觸媒製備奈米碳螺旋線圈之影響 54
4.3.3直立CVD爐溫度差異性成長奈米碳螺旋線圈 58
4.3.4小結 60
5.結論 62
參考文獻 64
自傳 69

[1]Motojima, S., Noda, Y., Hoshiya, Y., and Hishikawa, Y., “Electromagnetic Wave Absorption Property of Carbon Microcoils in 12-110 GHz Region,” Journal of Applied Physics, Vol. 94, No. 4, p. 2325, 2003
[2]Pan, L. J., Hayashida, T. C., Zhang, M., and Nakayama, Y., “Field Emission Properties of Carbon Tubule Nanocoils,” Japanese Journal of Applied Physics, Vol. 40, No. 3B, pp. l235-l237, 2001.
[3]馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台北,第1.2-1.10頁,2006。
[4]王翰韜,“ 以化學氣相沉積法低溫製備奈米碳管之研究” ,碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第6-7頁,2005。
[5]Davis, W. R ., Slawson , R. J., and Rigby, G. R., “An unusual form of carbon,” Nature,Vol.171, p.11954, 1953
[6]Lau, K. T., Lu M., and Hui, D., “Coiled Carbon Nanotubes:Synthesis and their Potential Applications in Advanced Composite Structures,” Composites: Part B, Vol. 37, pp. 437-448, 2006
[7]Motojima, S., Asakura, S., Hirata, M., and Iwanaga, H., “Effect of MetalImpurities on the Growth of Micro-Coiled Carbon Fibers by Pyrolysis of Acetylene,” Materials Science and Engineering B, Vol. 34, pp. 9-11, 1995.
[8]Okazawa, N., Hosokawa, S., Goto, T., and Nakayama, Y., “Synthesis of carbon Tubule Nanocoils Using Fe-In-Sn-O Fine Particles as Catalysts.” Journal of Physical Chemistry B, Vol.109,pp.17366-17371, 2005.
[9] Hayashidaa, T., Pan, L., Haradab, A., and Nakayama, Y., “Effects of Iron and Indium Tin Oxide on the Growth of Carbon Tubule Nanocoils,” Physical B, Vol.323, pp. 350-351, 2002.
[10] Ding, D. Y., Wang, J. N., Cao, Z. L., Dai, J. H., and Yu, F., “Ni-Ni3P Alloy Catalyst for Carbon Nanostructures,” Chemical Physics Letters, Vol. 371, pp. 333-336, 2003.
[11] Chang, N. K., and Chang, S. H., “High-Yield synthesis of carbon nanocoils on stainless steel,” Carbon, Vol. 46, pp. 1106-1109, 2008.
[12] Liu, W. C., Lin, H. K., Chen, Y. L., Lee, C. Y., and Chiu, H. T., “Growth of Carbon Nanocoils from K and Ag Cooperative Bicatalyst Assisted Thermal Decomposition of Acetylene, ”ACS NANO, Vol. 4. No. 7,pp. 4149–4157, 2010.
[13] Lee, S. Y., Yamada, M., and Miyake, M., “Synthesis of Carbon Nanotubes and Carbon Nano filaments over Palladium Supported Catalysts,” Science and Technology of Advanced Materials, Vol. 6, pp. 420-426, 2005.
[14] Liu, Y. M., Sung, Y., Chen, T. T., Wang, H. T., and Ger, M. D., “Low Temperature Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Non-Isothermal Deposited Ni–P–Pd as Co-Catalyst,” Materials Chemistry and Physics, Vol. 106, pp. 399-405, 2007.
[15] Lee, C. J., Park, J., Kim, J. M., Huh, Y., Lee, J. Y., and No, K. S., “Low- Temperature Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Pd, Cr, and Pt as Co-Catalyst,” Chemical Physics Letters, Vol. 327, pp. 277-283, 2000.
[16] 陳品文,“以均溫置換法製備鐵、鈷與鎳觸媒成長奈米碳管及SiO2緩衝層對奈米碳管成長之影響” ,碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第12-19頁,2007。
[17] Tang, N., Zhong, W., Gedanken, A., and Du, Y. W., “High Magnetization Helical Carbon Nanofibers Produced by Nanoparticle Catalysis,” Journal of Physical Chemistry B, Vol. 110, pp. 11772-11774, 2006.
[18] Li, D. W., Pan, L. J., Qian, J. J., and Liu, D. P., “Highly Efficient Synthesis of Carbon Nanocoils by Catalyst Particles Prepared by a Sol-Gel Method,” Carbon, Vol. 48, pp.l70-175, 2010.
[19] 許添順,“化學置換程序回收氯化銅蝕刻廢液之研究”,碩士論文,中央大學環境工程研究所,桃園,第22頁,2002。
[20] 陳文丁,“奈米貴金屬粒子於噴墨列印金屬導線之應用”,碩士學位論文國防大學中正理工學院應用化學研究所,桃園,第35-39頁,2004。
[21] Ding , D. Y., Wang, J. N., Cao, Z. L., Dai, J. H., and Yu, F., “Ni-Ni3P Alloy Catalyst for Carbon Nanostructures,” Chemical Physics Letters, Vol. 371, pp. 333-336, 2003.
[22] 成會明、張勁燕,“奈米碳管”,五南圖書出版公司,台北,第575-582頁,2004。
[23] 沈曾民,“新型探材料”,材料科學與工程出版中心,北京,第160-170頁,2003。
[24] 孫紫茹,“以化學複合鍍法製備奈米碳材/鎳磷場發射陰極”, 碩士學位論文國防大學中正理工學院應用化學研究所,桃園,第17頁,2012。
[25] Baddour, C. E., Upham, D. C., and Meunier, J. L. “Direct and repetitive growth cycles of carbon nanotubes on stainless particles by chemical deposition in a fluidized bed.” Carbon, Vol. 48, pp. 2652-2656, 2010.
[26] Baker,R. T. K., Braber, M. A., Harries, P. S., Feates, F. S., and Waite, R. J., “Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene ,”Journal of Catalysis, Vol. 26, pp. 51-62, 1972.
[27] Oberlin, A., Endo, M., and Koyama, T., “High Resolution Electron Microscopy of Graphitizable Carbon Fiber Prepared by Benzene Decomposition ,”Japanese Journal of Applied Physics, Vol.16, pp. 15-19, 1997.
[28] Ahmed S, and Neil J. C., “The synthesis, properties and uses of carbon materials with helical morphology.” Journal of Advanced Research, Vol.3, pp. 195-223, 2011.
[29] Wen, Y., and Shen, Z., “Synthesis of Regular Coiled Carbon Nanotubes by Ni-Catalyzed Pyrolysis of Acetylene and a Growth Mechanism Analysis ,” Carbon, Vol. 39, pp. 2369-2386, 2001.
[30] Bandaru ,P. R., Daraio, C., Yang, K., and Rao, A. M.,“A plausible mechanism for the evolution of helical forms in nanostructure growth, ”Journal of Applied Physics ,Vol. 101, pp.094307-094307-4, 2007.
[31] Liu, W. C., Lin, H. K., Chen, Y. L., Lee, C. Y., and Chiu, H. T.,“ Growth of carbon nanocoils from K and Ag cooperative biocatalyst assisted thermal decomposition of acetylene ,”ACS Nano, Vol.4, pp.4149-4157, 2010.
[32] 李振宏,“奈米碳螺旋線圈應用於皮膚壓力感測器”,碩士學位論文,國立臺灣大學機械工程研究所,台北,第10-13頁,2008。
[33] Bi, H., Kou, K. C., Ostrikov, K. K., Zhang, J. Q., and Wang, Z. C., “Mechanical model and superelastic properties of carbon microcoils with circular cross-section,” Journal of Applied Physics, Vol. 106, pp. 023520-023520-7, 2009.
[34] Chen, X., Motojima, S., and Iwanga, H., “Vapor Phase Preparation of Super- Elastic Carbon Micro-Coils,” Journal of Crystal Growth, Vol. 237-239, pp. 1931-1936, 2002.
[35] Yamamoto, K., Hirayama, T., Kusunoki, M., Yang, S. M., and Motojima, S., “Electron holographic observation of micro-magnetic fields current-generated from single carbon coil,” Ultramicroscopy, Vol. 106, pp. 314-319, 2006.
[36] Hayashida, T., Pan, F. L., and Nakayama, Y., “Mechanical and Electrical Properties of Carbon Tubule Nanocoils,” Physica B, 3 Vol. 23, pp. 352-353, 2002.
[37] Motojima, S., Noda, Y., Hoshiya, Y., and Hishikawa, Y., “Electromagnetic Wave Absorption Property of Carbon Microcoils in 12-110 GHz Region,” Journal of Applied Physics, Vol. 94, No. 4, p. 2325, 2003.
[38] Chen, X., Motojima, S., and Iwanga, H., “Carbon Coatings on Carbon Micro- Coils by Pyrolysis of Methane and their Properties,” Carbon, Vol. 37, pp. 1825-1831, 1999.
[39] 吳政達,“單根奈米碳管場發射製程技術及特性研究”,碩士學位論文,國立清華大學電子工程研究所,新竹,第26-27頁,2008。
[40] Pan, L. J., Hayashida, T. C., Zhang M., and Nakayama, Y., “Field Emission Properties of Carbon Tubule Nanocoils,” Japanese Journal of Applied Physics, Vol. 40, No. 3B, pp. l235-l237, 2001.
[41] Sung, Y. W., Ok, G. J., Kim, J. W., Lee, M. S., Yeon, C. S., Lee, Y. H., and Kim, H. Y., “Synthesis and field emission characteristics of carbon nanocoils with a high aspect ratio supported by copper micro-tips,” Nanotechnology, Vol. 18, No. 24, pp. 245-603, 2007.
[42] Zhang, Z. Y., He, P. G., Sun, Z., Feng, P., Chen, Y. W., Li, H. L., and Tay, B. K., “Growth and field emission property of coiled carbon nanostructure using copper as catalyst,” Journal of Applied Surface Sciences, Vol. 94, No. 4, p. 2325, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊