跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 13:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:尤志文
研究生(外文):Chih -Wen Yu
論文名稱:在可見光下進行超音波光催化降解酚
論文名稱(外文):Sonophotocatalytic Degradation of Phenol under Visible Light Irradation
指導教授:王榮基王榮基引用關係
指導教授(外文):Rong-Chi Wang
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:184
中文關鍵詞:酚&酚&酚&酚&酚&酚&酚&酚&
外文關鍵詞:SonophotocatalysisPhenol degradationTiO2Visible light
相關次數:
  • 被引用被引用:4
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討操作在可見光下結合超音波在玻璃反應器內進
行超音波光催化反應降解酚。利用Sol-Gel 法製備0.5% ZnFe2O4/TiO2
固定在粒狀活性碳(GAC)作為一種能階較低的改質二氧化鈦光觸媒
並藉由XRD、SEM-EDS、BET 以測定製備的可見光光觸媒性質。
相對於可見光催化的實驗結果,超音波光催化系統顯示出更良
好的降解酚效果。超音波的加入對於光催化降解酚有加乘效果。反應
動力式經由擬一階動力式表示濃度與時間的關係,降解速率會受到液
相酚的起始酸鹼值、鹽類的添加以及不同氣體輸入的影響。回收後的
光觸媒,其可見光光催化降解酚之特性,會隨回收次數之增加而遞減。
The sonophotocatalytic degradation of phenol under visible light
irradiation combined with ultrasound was carried out in a glass reactor.
0.5%ZnFe2O4/TiO2-GAC was employed as the lower band gap
photocatalysts which were obtained by sol-gel process and characterized
by spectroscopic X-ray diffraction (XRD), scanning electron microscopy
with energy dispersive X-ray microanalyses (SEM-EDX) and
Brunauer-Emmett-Teller sorptometer (BET). Sonophotocatalytic
degradation of phenol has synergistic effect for phenol degradation in
comparison with photocatalytic reaction. The kinetic law for the
sonophotocatalytic degradation is determined to apparently the pseudo
first-order with respect to the concentration of phenol. The rates of
sonophotocatalytuc degradation are affected by the initial phenol pH
value, salts addition, and gas supplying. The characteristics of
photocatalysis under visible light irradiation would be reduced with the
recycling time of the recovered photocatalyst.
ACKNOWLEDGEMENT i
ABSTRACT (ENGLISH) ii
ABSTRACT (CHINESE) iii
TABLE OF CONTENTS iv
LIST OF TABLES ix
LIST OF FIGURES xi
NOMENCLATURE xvii
CHAPTER
1 INTRODUCTION 1
2 LITERATURE REVIEW 7
2.1 Introduction of TiO2 7
2.1.1 Structure of TiO2 8
2.1.2 Preparation of TiO2 powder 16
2.1.2.1 Sol-gel method of metal alkoxides 17
2.1.2.2 Sol-gel method of metal salt 18
2.1.3 Supporting material and performance of the titanium Coating 19
2.2 The photocatalytic reaction 24
2.2.1 Photocatalytic reaction of Semicoductor 24
2.2.2 Homogeneous photocatalysis 27
2.2.3 Heterogeneous photocatalysis 29
2.2.4 The mechanism of photodegradation 30
2.2.5 Photocatalytic reaction of TiO2 32
2.3 Modification of TiO2 photocatalysis 33
2.3.1 Composite of synthesis photocatalyst and Semiconductor 34
2.3.2 Noble metal deposition 34
2.3.3 Doping other transitional metal ions 36
2.3.4 Preparation and characterization of zinc ferrite 36
2.4 Effect of the photocatalytic reaction parameters 44
2.4.1 Effect of reactant concentration 44
2.4.2 Effect of loading catalyst 45
2.4.3 Effect of oxygen 45
2.4.4 Effect of temperature 47
2.4.5 Effect of salts additive 48
2.4.6 Effect of pH value 48
2.5 Photodegradation Kinetics 49
2.6 Ultrasonic introduction 50
2.7 Sonochemical reaction theory 51
2.7.1 Cavitation 52
2.7.2 Sonochemical reaction regions 52
2.8 Sonolysis process 56
2.8.1 The mechanism of sonolysis 56
2.8.2 Sonicator development 59
2.9 Effect of the Sonolysis reaction parameters 65
2.9.1 Effect of intensity 65
2.9.2 Effect of frequency 67
2.9.3 Effect of pH value 67
2.9.4 Effect of temperature 68
2.9.5 Effect of dissolved gases 68
2.10 Advanced oxidation process 69
2.11 Combination of advanced oxidation process: Sonolysis and Photocatalysis 70
2.12 Phenol introduction 72
3 EXPERIMENTAL 79
3.1 Materials 79
3.2 Apparatus and instruments 79
3.3 Preparation and characterization of photocatalyst 79
3.3.1 Pretreatment of granular activated carbon 87
3.3.2 0.5%ZnFe2O4/TiO2-GAC photocatalyst 87
3.4 Instrumental apparatus for characteristic analysis of Photocatalyst 90
3.4.1 X-Ray diffraction analysis 90
3.4.2 Scanning electron microscopy/ Energy dispersive Spectrometer 92
3.4.3 Brunauer-Emmett-Teller sorptometer 92
3.5 Experimental procedure 92
3.5.1 Blank experiment 94
3.5.2 Sonophotocatalytic degradation of phenol 95
4 RESULTS AND DISCUSSION 100
4.1 Characterization of photocatalyst 100
4.1.1 XRD properties of photocatalyst 102
4.1.2 BET properties of photocatalyst 112
4.1.3 UV-Visible absorption spectra of photocatalysts 113
4.1.4 SEM and EDS properties of photocatalyst 116
4.2. Blank experiment 120
4.3 Sonophotocatalytic degradation of phenol 125
4.3.1 Effect of Ph 127
4.3.2. Effect of Gas Supplying 131
4.3.3. Effect of salts 133
4.3.4. Recovery of catalyst 135
4.4 Sonophotodegradation Kinetics 139
5 CONCLUSIONS 147
REFERENCES 149
REFERENCES
Abdullah, M., G.K.C. Low and R. Matthews, “Effects of Common Inorganic Anions on Rates of Photocatalytic Oxidation of Organic Carbon Over Illuminated Titanium Dioxide,” Journal of Physical Chemistry, 94, 6820-6825 (1990).
Adewuyi, Y.G., “Sonochemistry :Environmental Science and Engineering Applications”, Industrial & Engineering Chemistry Research, 40, 4681-4715 (2001).
Alaton, I.A., I.A. Balcioglu and D.W. Bahnemann, “Advanced Oxidation of a reactive dye bath effluent: Comparsion of O3, H2O2/UV-C and TiO2/UV-A process,” Water Research, 36, 1143-1154 (2002).
Anderson, C. and A.J. Bard, “An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis,” Journal of Physical Chemistry, 99, 9882-9885 (1995).
Araña, J., M.D. Rodríguez, O.G. Díaz, J.A.H. Melián and J.P. Peña., “The Effect of Modifying TiO2 on Catechol and Resorcinol Photocatalytic Degradation,” Journal of Solar Energy Engineering, 129, 80-86 (2007).
Bahena, C.L., S.S. Martinez, D.M. Guzman, M.R.T Hernandez, “Sonophotocatalytic degradation of alazine and gesaprim commercial herbicides in TiO2 slurry,” Chemosphere, 71, 982–989 (2008).
Burdett, J.K., T. Hughbanks, G.J. Miller, J.W. Richardson and J.V. Smith, “Structural-Electronic Relationships in Inorganic Solidglus:Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, Journal of the American Chemical Society, 109, 3639 (1987).
Chen, Y.C., and P. Smirniotis, “Enhancement of Photocatalytic Degradation of Phenol and Chlorophenols by Ultrasound,” Industrial & Engineering Chemistry Research, 41, 5958-5965 (2002).
Cheng, P., W. Li, T. Zhou, Y. Jin and M. Gu, “Physical and Photocatalytic Properties of Zinc Ferrite Doped Titania under Visible Light Irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, 168, 97-101 (2004).
Chester, G., M. Andersion and H. Read, “A Jacketed Annular Membrane Photocatalytic Reactor for Wastewater Treatment: Degradation of Formic Acid and Atrazine,” Journal of Photochemistry and Photobiology A: Chemistry, 71, 291-297 (1993).
Chiou, C.H., C.Y. Wu and R.S. Juang, “Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process,” Chemical Engineering Journal, 139, 322-329 (2007).
Choi, W., A. Termin and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” The Journal of Physical Chemistry, 98, 13669 (1994).
Churagulov, B.R., A.A. Burukhin, N.N. Oleynikov and P.E. Meskin, “Synthesis of Nanocrystaline Nickel-Zinc Ferrites under Hydrohtermal Conditions,” Inorganic Chemistry Division, Chem. Dep., Moscow State University (2000).
Chun, H., W. Yizhong and T. Hongxiao, “Preparation and Characterization Surface Bond-conjugated TiO2/SiO2 and Photocatalysis for Azo Dye,” Applied Catalysis B: Environmental, 30, 277-285 (2001).
Colón, G., M.C. Hidalgo and J.A. Navĺo, “A Novel Preparation of High Surface Area TiO2 Nanoparticles from Alkoxide Precursor and Using Active Carbon as Additive,” Catalysis Today, 76, 91-101 (2002).
Davydov, L., E.P. Reddy, P. France and P.G. Smirniotis, “Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders,” Applied Catalysis B: Environmental, 32, 95–105 (2001).
Diebold, U., “The Surface Science of Titanium Dioxide,” Surface Science Reports, 48, 53-239 (2003).
Entezari, M.H., C. Petrier and P. Devidal, “Sonochemical Degradation of Phenol in Water:A Comparison of Classical Equipment with a New Cylindrical Reactor”, Ultrasonic Sonochemistry, 10, 103-108 (2003).
Fu, X., W.A. Zeltner and M.A. Anderson, “The Gas-phase Photocatalytic Mineralization of Benzene on Porous Titania-Based Catalysts,” Applied Catalysis B: Environmental, 6, 209-224 (1995).
Fujishima, A., K. Hashimoto and T. Watanabe, “TiO2 Photocatalysis: Fundamentals and Applications,” BKC, Inc., Tokyo, (1999).
Fujishima, A., T.N. Rao and D.A. Tryk, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry. Reviews, 1, 1-21 (2000).
Gao, L., S. Zheng and Q. H. Zhang, “Photocatalysis and Applications of Nanotitania,” The 1st Edition, Chemical Industry Publisher, Beijing, (2002).
Hoffmann, M.R., S.T. Martin, W. Choi and D.W. Bahnamann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, 95, 69-96 (1995).
Hong X., Z. Wang, W. Cai, F. Lu, J. Zhang, Y. Yang, N. Ma, and Y. Liu, ”Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide,” Chemical. of Materials, 17, 1548-1552 (2005).
Ince, N.H., G. Tezcanli, R.K. Belen and I.G. Apikyan, “Ultrasound as a Catalyzer of Aqueous Reaction Systems:The State of the Art and Environmental Applications,” Applied Catalysis B: Environmental, 29, 167-176 (2001).
Jiang, Y., C. Petrier and T.D.Waite, “Kinetics and Mechanisms of Ultrasonic Degradation of Volatile Chlorinated Aromatics in Aqueous Solutions”, Ultrasonic Sonochemistry, 9, 317-323 (2002).
Kaur, S. and V. Singh, “Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2,” Ultrasonics Sonochemistry, 14, 531–537 (2007).
Kidak, R. and N.H. Ince, “Catalysis of advanced oxidation reactions by ultrasound: A case study with phenol,” Journal of Hazardous Materials 146, 630–635 (2007).
Kubo, M., K. Matsuoka, A. Takahashi, N. S. Kitakawa and T. Yonemoto, “Kinetics of ultrasonic degradation of phenol in the presence of TiO2 particles,” Ultrasonics Sonochemistry, 12, 263–269 (2005).
Kubo, M., H. Fukuda, X.J. Chua and T. Yonemoto,.”Kinetics of Ultrasonic Degradation of Phenol in the Presence of Composite Particles of Titanium Dioxide and Activated Carbon,” Industrial & Engineering Chemistry Research, 46, 699-704 (2007).
Legrini, O., E. Oliveros and A.M. Braun, “Photochemical Processes for Water Treatment,” Chemical. Reviews, 93, 671-698 (1993).
Levin, M E. M., C.R. Robbins and H.F. McMurdie, “Phase Diagrams for Ceramists,” The American Ceramic Society, Inc., 76, 4150-4999 (1975).
Li, J., C. Mi, J. Li, Y. Xu, Z. Jia and M. Li, “The removal of MO molecules from aqueous solution by the combination of ultrasound/adsorption/photocatalysis,” Ultrasonics Sonochemistry, 15, 949–954 (2008).
Linsebigler, A.L., Guangquan and J.T. Yates, “Photocatalysis on TiO2 Surfaces. Principles, Mechanisms, and Selected Results,” Chemical Reviews, 95, 735-758 (1995).
Liu, G.G., X.Z. Zhang, Y.J. Xu, X.S. Niu, L.Q. Zheng, and X.J. Ding, “Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2,” Chemosphere, 55, 1287–1291 (2004).
Loh, K.L., T.S. Chung, W.F. Ang, “Immobilizoed-cell menbrane bioreactor for high-strength phenol wastewater,” Journal of Environmental Engineering, 126, 75-79 (2000).
Ma, C.Y., J.Y. Xu, X.J. Liu, “Decomposition of an azo dye in aqueous solution by combination of ultrasound and visible light,” Ultrasonics, 44, e375-e378 (2006).
Mahamuni, N.N. and A.B. Pandit, “Effect of additives on ultrasonic degradation of phenol,” Ultrasonics Sonochemistry, 13, 165–174 (2006).
Makino, K., M.M. Mossoba, and P, Riesz, “Chemical effects of ultrasound on aqueous solutions.” Formation of hydroxyl radicals and hydrogen atoms., The Journal of Physical Chemistry, 87, 1369-1377(1983).
Mason, T.J. and J. P. Lorimer, “Sonochemistry:Theory, Applications and Uses of Ultrasound in Chemistry”, Wiley, New York, U.S.A. (1988).
Mason, T. J. and E.D. Cordemans, “Ultrasonic Intensification of Chemical Processing and Related Operations:A review”, Trans. IChemE. Part A, 74, 511-516 (1996).
Matthews, R.W., “Solar-electric Water Purfication Using Photocatalytic Oxidation with TiO2 as a Stationary Phase,” Solar Energy, 38, 405-413 (1987).
Matthews, R., “Photooxidative Degradation of Coloured Organics in Water Using Supported Catalysts TiO2 on Sand,” Water Research, 25, 1169-1176 (1991).
Matthews, R. and S. R. McEvoy, “Destruction of Phenol in Water with Sun, Sand and Photocatalysis,” Solar Energy, 49, 507-513 (1992).
Michael, G., “Photoelectrochemical cells”, Nature, 414, 338-344 (2001).
Mordocco, A., C. Kuek, R. Jenkins, “Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida,” Enzyme and Microbial Technology, 25, 530-536 (1999).
Mrowetz. M., C. Marta and E. Selli, “Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2” Ultrasonics Sonochemistry, 10, 247–254 (2003).
Naffrechoux, E., S. Chanoux, C. Petrier and J. Suptil, “Sonochemical and photochemical oxidation of organic matter,” Ultrasonics Sonochemistry, 7, 255–259 (2000).
Nosaka, Y. and M.A. Fox, “Kinetics for Electron Transfer from Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen,” Journal of Physical Chemistry, 88, 1893-1897 (1988).
Panchangam, S.C., Y.C. Lin, J.H. Tsai and C.F. Lin, “Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid,” Chemosphere, 75, 654–660 (2009).
Paola, A.D., L. Palmisano, A.M. Venezia and V. Augugliaro, ”Coupled Semiconductor Systems for Photocatalysis. Preparation and Characterization of Polycrystalline Mixed WO3/WS2 Powders,” Journal of Physical Chemistry B, 103, 8236-8244 (1999).
Priya, M.H., and G. Madras, “Kinetics of TiO2-Catalyzed Ultrasonic Degradation of Rhodamine Dyes,” ndustrial & Engineering Chemistry Research, 45, 913-921 (2006).
Ragaini, V., E. Selli, C.L. Bianchi, C. Pirola. “Sonophotocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison with other techniques,” Ultrasonics Sonochemistry, 8, 251-258 (2001).
Randtke, S.J. and V.L. Snoeyink, “Evaluating GAC Adsorption Capacity,” J. AWWA, Res. Techno., 75, 406 (1983).
Reutergardh, L.B. and M. Iangphasuk, “Photocatalytic Decolourization of Reactive Azo Dye: a Comparison between TiO2 and CdS Photocatalysis,” Chemosphere, 35, 585-596 (1997).
Riegel, G. and J.R. Bolton, “Photocatalytic Efficiency Variability in TiO2 Particles, ” Journal of Physical Chemistry, 99(12), 4215-24 (1995).
Riesz, P., T. Kondo, “Free radical formation induced by ultrasound and its biological implications.” Free Radical Biology & Medicine, 13, 247–270 (1992).
Sauer, T., G.C. Neto, H.J. Jose and R.F.P.M. Moreira, “Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor,” Journal of Photochemistry and Photobiology A: Chemistry, 149, 147-154 (2002).
Scott T.M., A.T. Lee, M.R. Hoffmann, “Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons,” Enviromental Science & Technology, 29, 2567-2573 (1995).
Serpone, N., P. Colarusso, “Effects of ultrasounds on heterogeneous chemical reactions – a useful tool to generate radicals and to examine reaction mechanisms Res.” Chemical intermediate, 20(6), 635–680 (1994).
Serpone, N., P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalyzed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors.” Journal of Photochemistry and Photobiology, A: Chemistry, 85(3), 247-55 (1995).
Shourong, Z., H. Qingguo, Z. Jun and W. Bingkun, “A study on Dye Pohotoremoval in TiO2 Suspension Solution,” Journal of Photochemistry and Photobiology A: Chemistry, 108, 235-238 (1997).
Sopyan, I., M. Watanabe, S. Marasawa, K. Hashimoto and A. Fujishima, “A Film-Type Photocatalyst Incorporating Highly Active TiO2 Powder and Fluororesin Binder: Photocatalytic Activity and Long-Term Stability,” Journal of Electroanalytical Chemistry, 415, 183-186 (1996).
Suslick, K.S., “The chemical effects of ultrasound,” Scientific American, 80-86 (1989).
Suslick, K.S., L.A. Crum, “Sonochemistry and Sonoluminescence,” in Encyclopedia of. Acoustics; Crocker, M. J., ed.; Wiley-Interscience: New York., vol. 1, ch. 26, 271-282 (1997).
Thompson, L.H. and L.K. Doraiswany, “Sonochemistry:Science and Engineering,” Industrial & Engineering Chemistry Research, 38, 1215-1249 (1999).
Tsumura, T., N. Kojitani, H. Umemura, M. Toyoda and M. Inagaki, “Composites between Photoactive Anatase-Type TiO2 and Adsorptive Carbon,” Applied Surface Science, 196, 429-436 (2002).
Valenzuela, M.A., P. Bosch, J. Jiménez-Becerrill, O. Quiroz and A.I. Páez, “Preparation, Characterization and Photocatalytic Activity of ZnO, Fe2O3 and ZnFe2O4,” Journal of Photochemistry and Photobiology A: Chemistry, 148, 177-182 (2002).
Wang, C.C., C.M. Lee, C.J. Lu, M.S. Chuang, C.Z. Huang, “Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria,” Chemosphere , 41, 1873-1879 (2000).
Wang, J., B. Guo, X. Zhang, Z. Zhang, J. Han, J. Wu, “Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase,” Ultrasonics Sonochemistry, 12, 331–337 (2005).
Wang, R.C, K.S. Fan, and J.S. Chang, “Removal of Acid Dye by ZnFe2O4/TiO2-Immobilized Granular Activated Carbon under Visible Light Irradiation in a Recycle Liquid-Solid Fluidized Bed,” Journal of the Taiwan Institute of Chemical Engineers, 40, 533-540 (2009).
Weavers, L.K., F.H. Ling and M.R. Hoffmann,“Aromatic Compound Degradation in Water Using a Combination of Sonolysis and Ozonolysis”, Environmental Science & Technology, 32(18), 2727-2733 (1998).
Wold, A., “Photocatalytic Properties of TiO2”, Chemistry of Materials, 5, 280-283 (1993).
Wu, C.H, “Photodegradation of C.I. Reactive Red 2 in UV/TiO2-based systems: Effects of ultrasound irradiation,” Journal of Hazardous Materials, 167, 434-439 (2009).
Wu, C., X. Liu, D. We, J. Fan and L. Wang, “Photosonochemical degradation of phenol in water,” Water Research, 35, 3927–3933 (2001).
Wu, J.M., H.S. Huang and C.D. Livengood, “Ultrasonic Destruction of Chlorinated Compounds in Aqueous Solution”, Environ. Prog., 195-201 (1992).
Yamashita, H., H. Nishiguchi, N. Kamada and M.Anpo, “Photocatalytic Reduction of CO2 with H2O on TiO2 and Cu/TiO2 Catalysts,” Res. on Chem. Intermediates, 20, 815-823 (1994).
Yamashita H., M. Harada, J. Misaka, H. Nakao, M. Takeuchi and M. Anpo, “Application of Ion Beams for Preparation of TiO2 Thin Film Photocatalysts Operatable under Visible Light Irradiation: Ion-Assisted Deposition and Metal Ion-Implantation,” Nuclear Instruments and Methods in Physics Research B, 206, 889–892 (2003).
Yamashita, H., M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh and N. Iwamoto, “Preparation of Titanium dioxide Hotocatalysts Anchored on Porous Silica Glass by a Metal Ion-Implantation Method and Their Photocatalytic Reactivities for the Degradation of 2-propanol Diluted in Water,” The Journal of Physical Chemistry B, 102, 10707 (1998).
Yuan, Z.H. and L.D. Zhang, “Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite,” Journal of Materials Chemistry, 11, 1265–1268 (2001).
Yuan, Z.H. J.H. Jia, and L.D. Zhang, “Influence of codoping of Zn(II) + Fe(III) on the photocatalytic activity of TiO2 for phenol degradation,” Materials Chemistry and Physics, 73, 2-3, 323–326 (2002).
Zeltner, W.A., C.G. Hill and M. Anderson, “Supported Titania for Photodegradation,” CHEMTECH, 21, 21-28 (1993).
吳怡貞, “利用真空濺鍍法製備可見光奈米光觸媒進行丙銅分解之研究”,96學年碩士學位論文,國立中山大學環境工程系碩士班 (2007)
潘建呈、吳紀聖,“具可見光應答之 Cr/TiO2 奈米光觸媒” 界面科學會誌 , 中華民國93年12月, 26(4), 175-182 (2004)
鄭敬賢, “超音波場對活性碳液相吸附與脫附之影響”,93學年碩士學位論文,元智大學化學工程學系碩士班 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top