跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/22 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪旻楷
研究生(外文):Hung, Min-Kai
論文名稱:On the finiteness of geometric knots
論文名稱(外文):On the finiteness of geometric knots
指導教授:林俊吉林俊吉引用關係
指導教授(外文):Lin, Chun-Chi
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:27
中文關鍵詞:正交投影能平均交叉數厚度總曲率結型
外文關鍵詞:knotsnormal projection energyaverage crossing numberthicknesstotal curvatureknot type
相關次數:
  • 被引用被引用:0
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在這篇文章中,我們考慮Normal Projection Energy的一些性質。首先,在$C^{1,1}$平滑性下的Knot,有上界之Normal Projection Energy給出Knot的Gromov's distortion下界。接著,Normal Projection Energy可由total curvature和ropelength之乘積涵蓋住。最後,為求Normal Projection Energy的涵蓋界,我們考慮一類包含在球中並給定端點和總長之曲線的total curvature。
In these paper, we consider several properties of Normal Projection Energy. Firstly, among the class of $C^{1,1}$-smooth knots, the upper bound of Normal Projection Energy gives a uniform lower bound of Gromov's distorsion of knots. Secondly, Normal Projection Energy is bounded by the product of total curvature and ropelength. Thirdly, to prove the bound of Normal Projection Energy, we study the curves which attain the infimum of the total absolute curvature in the set of curves contained in a ball with fixed endpoints and length.
1. Introduction........................................1
2. Lower bounds for thickness of knots or links as a function of their Normal Projection Energy.............3
3. The total absolute curvature of piecewise $C^{2}$ open curve in $R^{3}$......................................14
4. A upper bound of Normal Projection Energy and
Finiteness of Knot Type...............................18
5. References.........................................26
[1] G. Buck and J. Orloff, A simple energy function for knots, Topology Appl. 61 (1995), no. 3, 205-214.
[2] G. Buck and J. Simon, Thickness and crossing number of knots, Topology Appl. 91 (1999), no. 3, 245-257.
[3] G. Buck and J. Simon, Total curvature and packing of knots, Topology Appl. 154 (2007), no. 1, 192-204.
[4] K. Enomoto, J. I. Itoh and R. Sinlair, The total absolute curvature of open curves in E3, Illinois Journal of Mathematics, Volume 52, No.1, Spring 2008, Pages 47-76.
[5] M. Freeddman, Z. -X. He and Z. Wang, M¨obius energy of knots and unknots, Ann. of Math. 139 (1994), 1-50.
[6] O. Gonzalez and J. H. Maddocks, Global curvature, thickness, and the ideal shapes of knots, Proc. Natl. Acad. Sci. USA 96 (1999), no. 9, 4769-4773.
[7] Zheng-Xu He, On the Minimizers of the Mobuis Cross Energy of Links, AMS (2000).
[8] R. A. Litherland, J. Simon, O. Durumeric and E. Rawdon, Thickness of knots, Topology Appl. 91 (1999), 233-244.
[9] C. C. Lin and H. R. Schwetlick, On the geometric flow of Kirchhoff elastic rods, SIAM J. Appl. Math. 65 (2005), no. 2, 720-736.
[10] J. O’Hara, Energy of knots and conformal geometry, Series on Knots and Everything, 33. World Scientific Publishing Co., Inc., River Edge, NJ, 20003.
[11] J. O’Hara, Energy functionals of knots. II., Topology Appl. 56 (1994), no. 1, 45-61.
[12] J. M. Sullivan, Approximating ropelength by energy functions, 181–186, Contemp. Math., 304, (2002).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top